TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCME Statement</td>
<td>Inside Front Cover</td>
</tr>
<tr>
<td>Officers and Committees</td>
<td>page 2</td>
</tr>
<tr>
<td>Past Presidents</td>
<td>page 4</td>
</tr>
<tr>
<td>Past Speakers</td>
<td>page 5</td>
</tr>
<tr>
<td>Award Recipients</td>
<td>page 9</td>
</tr>
<tr>
<td>General Information</td>
<td>page 14</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>page 20</td>
</tr>
<tr>
<td>Symposia Outlines – Breakfast and Lunch</td>
<td>page 20</td>
</tr>
<tr>
<td>Author/Speaker Disclosures</td>
<td>page 21</td>
</tr>
<tr>
<td>Scientific Program</td>
<td>page 223</td>
</tr>
<tr>
<td>Schedule at a Glance</td>
<td>page 25</td>
</tr>
<tr>
<td>Full Program</td>
<td>page 30</td>
</tr>
<tr>
<td>Special Interest Group (SIG) Breakfast</td>
<td>page 65</td>
</tr>
<tr>
<td>ePosters</td>
<td>page 223</td>
</tr>
<tr>
<td>Constitution and By-Laws</td>
<td>page 232</td>
</tr>
<tr>
<td>Directory</td>
<td>page 240</td>
</tr>
<tr>
<td>Alphabetical</td>
<td>page 317</td>
</tr>
<tr>
<td>Geographical</td>
<td>page 317</td>
</tr>
<tr>
<td>Exhibitors</td>
<td>page 339</td>
</tr>
<tr>
<td>Floor Plan</td>
<td>page 340</td>
</tr>
<tr>
<td>Descriptions</td>
<td>page 340</td>
</tr>
<tr>
<td>Index of Authors</td>
<td>page 343</td>
</tr>
<tr>
<td>Membership Update Form</td>
<td>page 361</td>
</tr>
</tbody>
</table>

Society for Clinical Vascular Surgery
500 Cummings Center, Suite 4550
Beverly, MA 01915
Telephone: (978) 927-8330
Fax: (978) 524-8890
Email: admin@scvs.org
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

SOCIETY FOR CLINICAL VASCULAR SURGERY

OFFICERS AND COMMITTEES

COUNCIL
Michel S. Makaroun, MD, President
Samuel R. Money, MD, President-Elect
Fred A. Weaver, MD, Vice President
Robert B. McLafferty, MD, Secretary
Thomas C. Bower, MD, Treasurer
William J. Quinones-Baldrich, MD, Recorder
Joann M. Lohr, MD, Past President
Alan B. Lumsden, MD, Past President
George H. Meier, MD, Past President
R. Clement Darling, III, MD, Member-at-Large
Alan M. Dietzek, MD, Member-at-Large
Richard F. Neville, MD, Member-at-Large
Herbert Dardik, MD, Editor (Ex-Officio)
Enrico Ascher, MD, Representative to ACS Board of Governors
Peter F. Lawrence, MD, Past President, Representative to ACS Advisory Council for Vascular Surgery
Joseph S. Giglia, MD, Program Chair (Ex-Officio)

CONSTITUTION AND BY-LAWS COMMITTEE
Colleen J. Moore, MD, Chair
Manju Kalra, MBBS
Robert Y. Rhee, MD

FINANCE COMMITTEE
Thomas C. Bower, MD, Chair
Mark G. Davies, MD
John Blebea, MD
William D. Jordan, Jr., MD

MEMBERSHIP COMMITTEE
Sean P. Roddy, MD Chair
Jenny G. Cho, MD
M. Ashraf Mansour, MD
Robert B. McLafferty, MD

NOMINATING COMMITTEE
Michel S. Makaroun, MD, Chair
Samuel R. Money, MD
Joann M. Lohr, MD
Alan B. Lumsden, MD
George H. Meier, MD

PROGRAM COMMITTEE
Joseph S. Giglia, MD, Chair
Michel S. Makaroun, MD
Robert B. McLafferty, MD
William J. Quinones-Baldrich, MD
Rabih A. Chaer, MD
Gilbert R. Upchurch, MD

COMMITTEE ON POSTGRADUATE EDUCATION
Fred A. Weaver, MD, Chair
SCVS • 40TH ANNUAL SYMPOSIUM ON VASCULAR SURGERY

REPRESENTATIVES

AMERICAN BOARD OF SURGERY VASCULAR SURGERY BOARD
Samuel R. Money, MD

AMERICAN COLLEGE OF SURGEONS BOARD OF GOVERNORS
Enrico Ascher, MD

AMERICAN COLLEGE OF SURGEONS ADVISORY COUNCIL FOR
VASCULAR SURGERY
Peter F. Lawrence, MD

ADVISORY ASSEMBLY OF VASCULAR SOCIETIES
Robert B. McLafferty, MD

INTERSOCIETAL ACCREDITATION COMMISSION (IAC)
Alan M. Dietzek, MD
Steven A. Leers, MD

SOCIETY OF VASCULAR SURGERY
Alan B. Lumsden, MD

VASCULAR DISEASE FOUNDATION
M. Ashraf Mansour, MD
<table>
<thead>
<tr>
<th>Year</th>
<th>President</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>Joann M. Lohr, MD</td>
<td>Orlando, Florida</td>
</tr>
<tr>
<td>2010</td>
<td>George H. Meier, MD</td>
<td>Scottsdale, Arizona</td>
</tr>
<tr>
<td>2009</td>
<td>Alan B. Lumsden, MD</td>
<td>Fort Lauderdale, Florida</td>
</tr>
<tr>
<td>2008</td>
<td>Keith D. Calligaro, MD</td>
<td>Las Vegas, Nevada</td>
</tr>
<tr>
<td>2007</td>
<td>O. William Brown, MD</td>
<td>Orlando, Florida</td>
</tr>
<tr>
<td>2006</td>
<td>Anton N. Sidawy, MD</td>
<td>Las Vegas, Nevada</td>
</tr>
<tr>
<td>2005</td>
<td>Peter F. Lawrence, MD</td>
<td>Coral Gables, Florida</td>
</tr>
<tr>
<td>2004</td>
<td>Kim J. Hodgson, MD</td>
<td>Rancho Mirage, California</td>
</tr>
<tr>
<td>2003</td>
<td>Enrico Ascher, MD</td>
<td>Miami, Florida</td>
</tr>
<tr>
<td>2002</td>
<td>John J. Ricotta, MD</td>
<td>Las Vegas, Nevada</td>
</tr>
<tr>
<td>2001</td>
<td>Marshall W. Webster, MD</td>
<td>Boca Raton, Florida</td>
</tr>
<tr>
<td>2000</td>
<td>Peter Gloviczki, MD</td>
<td>Rancho Mirage, California</td>
</tr>
<tr>
<td>1999</td>
<td>James O. Menzoian, MD</td>
<td>Lake Buena Vista, Florida</td>
</tr>
<tr>
<td>1998</td>
<td>P. Michael McCart, MD</td>
<td>Coronado, California</td>
</tr>
<tr>
<td>1997</td>
<td>John D. Corson, MB, ChB</td>
<td>Naples, Florida</td>
</tr>
<tr>
<td>1996</td>
<td>Bruce J. Brener, MD</td>
<td>Rancho Mirage, California</td>
</tr>
<tr>
<td>1995</td>
<td>Larry H. Hollier, MD</td>
<td>Fort Lauderdale, Florida</td>
</tr>
<tr>
<td>1994</td>
<td>Wayne M. Swenson, MD</td>
<td>Tucson, Arizona</td>
</tr>
<tr>
<td>1993</td>
<td>Morris D. Kerstein, MD</td>
<td>Palm Desert, California</td>
</tr>
<tr>
<td>1992</td>
<td>J. Dennis Baker, MD</td>
<td>Orlando, Florida</td>
</tr>
<tr>
<td>1991</td>
<td>Toshio Inahara, MD</td>
<td>Kauai, Hawaii</td>
</tr>
<tr>
<td>1990</td>
<td>Roy L. Tawes, Jr., MD</td>
<td>Palm Desert, California</td>
</tr>
<tr>
<td>1989</td>
<td>Dominic A. DeLaurentis, MD</td>
<td>Boca Raton, Florida</td>
</tr>
<tr>
<td>1988</td>
<td>Joseph G. Sladen, MD</td>
<td>Maui, Hawaii</td>
</tr>
<tr>
<td>1987</td>
<td>Sheldon Levin, MD</td>
<td>Scottsdale, Arizona</td>
</tr>
<tr>
<td>1986</td>
<td>James E. McKittrick, MD</td>
<td>Orlando, Florida</td>
</tr>
<tr>
<td>1985</td>
<td>Herbert Dardik, MD</td>
<td>Rancho Mirage, California</td>
</tr>
<tr>
<td>1984</td>
<td>C. Allen Wall, MD</td>
<td>Palm Springs, California</td>
</tr>
<tr>
<td>1983</td>
<td>Robert L. Kistner, MD</td>
<td>Palm Springs, California</td>
</tr>
<tr>
<td>1982</td>
<td>Robert M. Blumenberg, MD</td>
<td>Palm Springs, California</td>
</tr>
<tr>
<td>1981</td>
<td>Max Gaspar, MD</td>
<td>Palm Springs, California</td>
</tr>
<tr>
<td>1976-</td>
<td>Peter B. Samuels MD</td>
<td>Palm Springs, California</td>
</tr>
</tbody>
</table>
PAST SPEAKERS

DISTINGUISHED VISITING PROFESSORS

2011 Robert L. Kistner, MD
"Venous Ulcers: Treatable and Presentable"

2010 Thom W. Rooke, MD
"The Seven Blunders of the Vascular Word"

2009 J. Michael Bacharach, MD, MPH, FACC
"Evolution of Vascular Care: Collaboration or Competition"

2008 G. Patrick Clagett, MD, Dallas, TX
"EVAR, TEVAR, FEVAR, TOO FAR?"

2007 Jonathan Towne, MD, Milwaukee, Wisconsin
M.O.C. – What Does It Mean?

2006 Jack L. Cronenwett, MD, Lebanon, New Hampshire
Vascular Surgery Training: An International Evolution

2005 Wesley S. Moore, MD, Los Angeles, California
How Has Technology Influenced My Clinical Practice?

2004 Thomas F. Fogarty, MD, Portola Valley, California
The Impact of Technology on the Surgical Specialties
Richard M. Green, MD, Rochester, New York
Where Do We Go From Here?

2003 Frank J. Veith, MD, FACS, Bronx, New York
Where is Vascular Surgery Coming From and Where Is It Going: A Call to
Arms for Every Vascular Surgeon

2002 William P. Paaske, MD, FRCS, FACS, Aarhus, Denmark
Regulation of Distal Perfusion: A European’s View on Local Control of the
Peripheral Circulation in Functional and Critical Ischemia, and in Patients
with AAA

2001 James May, MD, Sydney, Australia
A Critique on the Current Status of Endovascular Treament of AAA

2000 Juan L. Parodi, MD, Buenos Aires, Argentina
Endovascular Repair of Aortic Aneurysms in the 21st Century

1999 Alexander W. Clowes, MD, Seattle, Washington
Vascular Gene Therapy
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

1997 Sir Norman Browse, MD, Surrey, England
Lymphatic Problems Encountered by the Clinical Vascular Surgeon

1996 Edouard Kieffer, MD, Paris, France
Survey for Type B Aortic Dissection: When and How?

1995 Wilhelm Sandmann, MD, Dusseldorf, Germany
Chronic Progressive and Acute on Chronic Visceral Ischemia: Surgical Approach, Reconstructive Techniques and Results

1994 Hans O. Myhre, MD, Trondheim, Norway
Hemodynamic Response and Cerebro-Spinal Fluid Dynamics During Proximal Aortic Cross Clamping

1993 Keizo Sugimachi, MD, Fukuoka, Japan
Management of Concomitant Abdominal Aortic Aneurysm and Gastrointestinal Malignancy

Evaluation of Chronic Venous Insufficiency

1991 Sam Mellick, MD, Brisbane, Australia
Ruptured Aortic Aneurysms – Current Concepts

Famous Operations and Ideas
HUME MEMORIAL LECTURERS

2003 Robert W. Hobson, II, MD, FACS, Newark, New Jersey
 Clinical Trial Methodology and Carotid Occlusive Disease.

2002 K. Wayne Johnston, MD, Toronto, Ontario
 New Technology – The Issues Raise Caution

2001 Lazar J. Greenfield, MD, FACS, Ann Arbor, Michigan
 Protecting Patients From Thromboembolism

2000 Robert B. Rutherford, MD, FACS, Silverthorne, Colorado
 Endograft Repair of AAA: Progress and Problems

1999 John M. Porter, MD, Portland, Oregon
 Leg Bypass: Outcome Assessment

1998 John E. Connolly, MD, Irvine, California
 Prevention of Spinal Cord Complications in Aortic Surgery

1997 James C. Stanley, MD, Ann Arbor, Michigan
 Surgical Treatment of Renovascular Hypertension

1996 Frank J. Veith, MD, Bronx, New York
 New York Experience with Endovascular Grafts and Their Influence on
 Our Vascular Surgical Practice

1995 Calvin B. Ernst, MD, Detroit, Michigan
 Peer Review – Does It Work?

1994 Malcolm O. Perry, MD, Dallas, Texas
 Ischemia-Reperfusion Injury of Skeletal Muscle

1993 Norman M. Rich, MD, Bethesda, Maryland
 Surgeon’s Response to Battlefield Vascular Trauma

 Atherogenesis and High Resolution on Ultrasound: Clinical Complications

1991 D. Eugene Strandness, Jr., MD, Seattle, Washington
 Osler and His Thoughts for Us in 1991

1990 Wesley S. Moore, MD, Los Angeles, California
 The Future of Carotid Endarterectomy in the 1990s

1989 John A. Mannick, MD, Boston, Massachusetts
 Evolution of Arterial Reconstruction to the Infra-Popliteal Vessels

1988 John J. Bergan, MD, Chicago, Illinois
 The Challenges of Intestinal Ischemia
1987 Charles Hufnagel, MD, Washington, DC
Dissections of the Thoracic Aorta

1986 Jesse Thompson, MD, Dallas, Texas
Historical Aspects of Carotid Surgery

1985 James A. DeWeese, MD, Rochester, New York
Autogenous Veins for Femoro-Popliteal Bypasses – A 25 Year Experience

1984 Ralph A. Deterling, Jr., MD, Boston, Massachusetts

1983 Michael E. DeBakey, MD, Houston, Texas
Surgical Management of Aneurysms of the Aorta

1982 Harris B. Shumacker, Jr., MD, Washington, DC

1981 Max R. Gaspar, MD, Long Beach, California
The Surgeon and the Pilot

1980 Allan D. Callow, MD, Boston, Massachusetts
An Overview of the Stroke Problem in the Carotid Territory

1979 Wiley F. Barker, MD, Los Angeles, California
Milestones in the Use of Interruption in Venous Thromboembolism

1978 Karl Viktor Hall, MD, Oslo, Sweden

1977 Henry Haimovici, MD, New York, New York

1976 W. Sterling Edwards, MD, Albuquerque, New Mexico
Alexis Carrel and Its Contributions to Cardiovascular Surgery

1975 Jerome Sacks, MD, Encino, California
AWARDS

PETER B. SAMUELS AWARD RECIPIENTS

2011 Elizabeth L. Detschelt, MD, Pittsburg, PA
“Clinical Relevance of Serial CT Scans in Post-Endovascular Aneurysm Repair Patients”

2010 Niamh Hynes, MD, Galway, Ireland
“Five-year Experience with EVAR without Fenestration for Pararenal Aortic Aneurysms. Clinical Efficacy, Reintervention Rates & Cost-Effectiveness Compared with Open Repair in High Deliberate Practice Volume Centres?”

2009 Houssam K. Younes, MD, Houston, TX
“Hybrid Thoracic Endovascular Aortic Repair (Tevar): Are We Pushing the Envelope Too Far?”

2008 Owen N. Johnson, MD, Washington, DC
“Outcome Analysis of Popliteal Artery Aneurysm Repair”

2007 Anantha K. Ramanathan, MD, Buffalo, NY
“Should DOQI Guidelines be Updated? The Role of Basilic Vein Fistula”

2006 Donald T. Baril, MD, New York, New York
“An Eight-year Experience with Type II Endoleaks: Natural History Suggests Selective Intervention is a Safe Approach”

2005 Indranil Sinha, BA, Ann Arbor, Michigan
“A Biological Basis for Anatomic Variation in Descending Thoracic Aneurysms”

2004 Gilbert R. Upchurch, Jr., MD, Ann Arbor, Michigan

2003 Thomas Maldonado, MD
“Successful Management of Type I Endoleaks Following Aortic Aneurysm Repair Using N-Butyl Cyanoacrylate Adhesive”

2002 Juan Ayerdi, MD
“Indications and Outcomes of Patients in the Phase III Trial Versus Commercial Aneurrx”

2001 Ranier V. Aquino, MD
“Are Somatosensory Evoked Potentials an Acceptable Alternative to Electroencephalogram in Monitoring Carotid Endarterectomy”
2000 Nicholas Morrissey, MD
Endovascular Repair of Paraanastomotic Aneurysms of the Aorta and Iliac Arteries: Preferred Treatment for a Complex Problem

1999 Ricardo Avena, MD, Washington, DC
The Proliferative Effects of Insulin and Glucose on Human Infragenicular Vascular Smooth Muscle Cells are Mediated by Insulin Like Growth Factor-1 Receptors, Not by Insulin Receptors

Restenosis Following Percutaneous Transluminal Angioplasty: A Human Model

1997 Dan L. Morehouse, MD, Danville, Pennsylvania
Physician Work Effort and Reimbursement or Ruptured Abdominal Aortic Aneurysms

1996 John A. Manicone, MD, Newark, New Jersey
The Effect of Thrombus on the Vascular Endothelium of Arterialized Vein Grafts

1995 Andrew J. Seiwert, MD, Danville, Pennsylvania
Ruptured Abdominal Aortic Aneurysm Repair

1994 Roderick T.A. Chalmers, MD, Iowa City, Iowa
The Effects of Polytetrafluoroethylene Graft Anastomotic Stenting in a Canine Model

1993 Graham W. Long, MD, Royal Oak, Michigan
Cell Washing Versus Immediate Reinfusion of Intraoperatively Shed Blood During Abdominal Aortic Aneurysm Repair

Reduction of the Extent of Ischemic Skeletal Muscle Necrosis By Perfusion With Oxygenated Perfluorocarbon

1991 Ronald A. Klein, MD, Detroit, Michigan
1990 Robert J. Anderson, MD, Newark, New Jersey

1989 Mark F. Fillinger, MD, Syracuse, New York
Beneficial Effects of Banding on Venous Intimal-Medial Hyperplasia in Arteriovenous Loop Grafts

1988 Michael Belkin, MD, Boston, Massachusetts
A New Spectrophotometric Assay for the Measurement of Skeletal Muscle Ischemia-Reperfusion Injury
1987 William D. Suval, MD, Newark, New Jersey
1986 John A. Schwartz, MD, Chicago, Illinois
 Evaluation and Clinical Application of a New Hemorheologic Technique: The Effect of the Acute Phase Reaction on Blood Viscosity Following Infrainguinal Arterial Bypass
1985 Jens Eldrup-Jorgensen, MD, Boston, Massachusetts
1984 Steven R. Grundy, MD, Ann Arbor, Michigan
 Azure A: A New Measurement for the Chemical Assay of Heparin
1983 H. Margaret Hancock, MD
1982 Karl L. Claus, MD
1981 Robert Lusby, MD
1980 Dale Buchbinder, MD, Chicago, Illinois
ALLASTAIR KARMODY AWARD RECIPIENTS

2011 Patrick Neville, MD, Cincinnati, Ohio
 Evan J. Ryer, MD, Rochester, Minnesota

2010 Clayton Brinster, MD, Philadelphia, Pennsylvania
 Late Open Conversion and Explantation of Abdominal Aortic Stent Grafts

2009 Aaron E. Bond, MD, Los Angeles, California
 The Influence of Stents on the Performance of an Ultrasonic Navigational System for Endovascular Procedures

2008 Chris Beirne, MD, Galway, Ireland
 A Prospective Comparative Study of Pre-Operative Duplex Ultrasound Arterial Mapping (DUAM), Digital-Subtraction Angiography (DSA) and Magnetic Resonance Angiography (MRA) in Critical Lower Limb Ischaemia (CLI) Prior to Endovascular Revascularization (EvR)—Clinical, Technical and Economic Outcome

2007 Andrew Bakken, MD, Rochester, New York
 Modern Peripheral Venous Angioplasty Significantly Enhances Arteriovenous Access Function and Lifespan

2006 Christopher D. Scibelli, MD, Norfolk, Virginia
 Subintimal Angioplasty for Lower Extremity Claudication

2005 Grace J. Wang, MD, Boston, Massachusetts
 Adventitial Angiogenesis and Vein graft Hyperplasia: Role of an Inhibitor of Apoptosis Protein, Survivin

2004 Charles E. Fields, MD, Rochester, Minnesota — First Place
 Desarom Teso, MD, New Haven, Connecticut
 Mahmoud B. Malas, MD, Ardsley, New York

2003 Joseph Lombardi, MD, Philadelphia, Pennsylvania — First Place
 Stephanie Elkhouri, MD, Rochester, Minnesota
 Douglas Willhite, MD, Philadelphia, Pennsylvania
 A. Cecillia Lorenzo, MD, Hartford, Connecticut

2002 Tanuja Damani, MD, Chicago, Illinois
 Neal Cayne, MD, New York, New York
 Theresa Impeduglia, MD, Staten Island, New York
 K. Kasirajan, MD, Rio Rancho, New Mexico

2001 Joseph V. Lombardi, MD, Philadelphia, Pennsylvania
 Randy J. Janczyk, MD, Royal Oak, Michigan
 Mihai Rosca, MD, Buffalo, New York
 Peter Lin, MD, Athens, Georgia
2000 Peter L. Faries, MD, Boston, Massachusetts
Ashish Gupta, MD, Detroit, Michigan
James R. Elmore, MD, Danville, Pennsylvania
Laura A. Karch, MD, Springfield, Illinois
1999 <No Award Given>
1998 F. Noel Parent, III, MD, Norfolk, Virginia
 Surgery for Neurogenic Thoracic Outlet Syndrome: A Comparison of Results
 Between Laborers and Non-Laborers
1997 Richard F. Neville, MD, Washington, DC
 Prosthetic Bypass with a Distal Vein Patch for Limb Salvage
1996 Joseph J. Piotrowski, MD, Cleveland, Ohio
 DVT Surveillance in High Risk Trauma Patients: Is It Warranted?
1995 Joann M. Lohr, MD, Cincinnati, Ohio
 Calf Vein Thrombi are not a Benign Finding
1994 Peter Gloviczki, MD, Rochester, Minnesota
 Prospective Evaluation of 100 Consecutive Microscope-Aided Pedal
 Bypasses: An Effective and Low Risk Operation to Salvage the Ischemic Foot
1993 Robert A. Morgan, MD, Indianapolis, Indiana
 Improved Recovery of Limb Function with ATP/MgCl$_2$ in an Ischemic
 Canine Hind Limb
1992 Khodam Rostami, MD, Los Angeles, California
 Endothelial Seeding: New Evidence and New Hope
1990 Tej M. Singh, MD, Chicago, Illinois
1989 Robert Forster, MD, Newark, New Jersey
1988 Lee Dresser, MD
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

GENERAL INFORMATION

REGISTRATION DESK
The Registration Desk will be located in the Encore Promenade area during the following hours:

- Wednesday, March 14: 9:00 am – 5:00 pm
- Thursday, March 15: 7:00 am – 12:30 pm
- Friday, March 16: 7:00 am – 5:00 pm
- Saturday, March 17: 7:30 am – 12:30 pm

MESSAGES
A message center will be maintained in the Registration Area during the registration hours. Please check it often. There will be NO PAGING in the scientific sessions.

SPEAKER READY ROOM
Faculty and Authors are requested to present their PowerPoint presentation (DVD, CD, thumbdrive, or Zip Disk) to the technician in the Speaker Ready Room, Schubert, upon arrival to the meeting, or at least 12 hours prior to the opening of the session in which you are scheduled to present. Single LCD projection (PowerPoint) from a single, dedicated PC or laptop will be provided. Individual laptop computers may not be used. Speaker Ready Room is located in the Schubert Room.

- Wednesday, March 14: 9:00 am – 5:00 pm
- Thursday, March 15: 7:00 am – 12:00 pm
- Friday, March 16: 7:00 am – 5:00 pm
- Saturday, March 17: 7:00 am – 12:00 pm

COFFEE BREAKS/ePOSTER VIEWING

- Wednesday, March 14: 3:15 pm – 4:00 pm
- Thursday, March 15: 9:30 am – 10:00 am
- Friday, March 16: 9:40 am – 10:15 am
- Saturday, March 17: 3:45 pm – 4:15 pm
MEMBER BUSINESS MEETING
(Member Only)
On Friday, March 16th, the Member Business Meeting Luncheon (for members only) will be held at 12:30 pm in Chopin 2-3.

WELCOME RECEPTION
On Wednesday evening, March 14th at 5:30 pm, there will be a Welcome Reception held in the Exhibition Hall, Encore Ballroom 1-3.

ANNUAL BANQUET
On Friday, March 16th, the Society will have its Annual Banquet at the XS Night Club located at the Encore Hotel. All registered physicians and spouses are welcome to attend. The Reception will be held from 6:00 pm – 8:00 pm for cocktails and hors d’oeuvre’s. Attendees will have the opportunity to make dinner plans following the conclusion of the banquet, remain in the club or return to the club later that evening complimentary.
SCVS FELLOWS PROGRAM

The Society for Clinical Vascular Surgery is again offering an exciting program dedicated to Clinical Vascular Fellows. Fellows can also participate in the SCVS Top Gun Competition, an opportunity to fine-tune surgical skills in a safe, simulated environment.

*The SCVS Fellows Program is not part of the SCVS scientific program and is not eligible for CME credit through the SCVS joint sponsor, CineMed.

Please Note: Your SCVS registration materials will be available for pickup at the Gore Registration Desk outside of Dubussy.

*Presentations should be loaded in the room at the tech table.

Program Co-Chairs:
Richard F. Neville, MD, Georgetown University
William D. Jordan, MD, University of Alabama

Tuesday, March 13
12:00 pm – 1:00 pm SCVS Fellows Lunch Mozart Patio (Rain back up Mozart)
1:00 pm – 3:10 pm SCVS Fellows Program (Part I) Dubussy
3:10 pm – 5:30 pm SCVS Fellows Technology Showcase Chopin 1
6:00 pm – 8:00 pm SCVS Fellows Reception Brahms Patio (Rain Backup – Brahms Ballroom)

Wednesday, March 14
7:00 am – 8:00 am SCVS Fellows Breakfast Dubussy
8:00 am – 11:30 am SCVS Fellows Program (Part II) Dubussy
11:30 am – 12:00 pm SCVS Fellows Lunch Dubussy
SCVS INCOMING FELLOWS PROGRAM
The Society for Clinical Vascular Surgery is again offering an exciting program dedicated to the needs of 3rd – 5th year residents accepted to a Vascular Fellowship.

*The SCVS Incoming Fellows Program is not part of the SCVS scientific program and are not eligible for CME credit through the SCVS joint sponsor, CineMed.

*Presentations should be loaded in the room at the tech table.

Program Co-Chairs:
Joseph J. Ricotta, MD, Emory University
Caron R. Rockman, MD, New York University

Wednesday, March 14
5:30 pm – 8:30 pm SCVS Incoming Fellows Program (Part 1 – Reception and Working Dinner) Chopin 4

Thursday, March 15
12:00 pm – 12:20 pm SCVS Incoming Fellows Working Lunch Chopin 4 & Patio
12:20 pm – 5:00 pm SCVS Incoming Fellows Program (Part II) Chopin 4
SCVS VASCULAR TOP GUN COMPETITION

This exciting competition, which includes a dinner during the final round, provides an opportunity for 2nd year/senior Fellows to fine-tune their surgical skills in a safe, simulated environment. The first rounds of competition will take place in the exhibit hall on Wednesday and Thursday, with the final round taking place during dinner on Thursday evening. During the First Rounds of competition all participants will be confronted with the same cases for simulation. Four semi-finalists (2 open and 2 endo) will proceed to the Final Round.

*The SCVS Top Gun Program is not part of the SCVS scientific program and are not eligible for CME credit through the SCVS joint sponsor, CineMed.

Program Chair:
Jean Bismuth, MD, Baylor College of Medicine

Thursday, March 15
6:00 pm – 9:00 pm SCVS Vascular Top Gun Program Dubussy

SCVS YOUNG VASCULAR SURGEONS DINNER

The Society for Clinical Vascular Surgery is again pleased to offer the Young Vascular Surgeons Program, designed for vascular surgeons who have completed fellowships and have been working for five years or less. Programming includes a special dinner symposium featuring talks from leaders in vascular surgery.

*The SCVS Young Vascular Surgeons Program is not part of the SCVS scientific program and are not eligible for CME credit through the SCVS joint sponsor, CineMed.

*Presentations should be loaded in the room at the tech table.

Program Co-Chairs:
Colleen J. Moore, MD, SIU School of Medicine
Donald T. Baril MD, University of Massachusetts Medical

Thursday, March 15
6:00 pm – 9:00 pm SCVS Young Vascular Surgeons Dinner Chopin 2
SCVS EXHIBIT HALL/PAVILIONS

A number of firms as listed at the end of this program will be with us as Exhibitors. Their attendance constitutes a valuable part of the meeting. We urge registrants to visit the exhibits during regularly scheduled breaks. Continental breakfast will be available each day; with continuous beverage service available during the scheduled hours of the Exhibition Hall, located in Encore 1-3.

The Society for Clinical Vascular Surgery wishes to thank the following companies for their exhibit support of the 2012 Annual Symposium:

- AngioDynamics
- Arstasis
- Atrium Medical Corp.
- Bard Peripheral Vascular
- Consensus Medical Systems, Inc.
- Cook Medical
- Covidien
- CryoLife, Inc.
- Edwards Lifesciences
- Endologix, Inc.
- Gore & Associates
- ICAVL
- Implantable Devices, Inc.
- InaVein, LLC
- LeMaitre Vascular, Inc.
- M2S, Inc.
- Med Streaming, LLC
- Medtronic
- Organogenesis Inc.
- Osborn Medical Corp.
- PenRad Technologies
- Scanlan International, Inc.
- Semler Scientific
- Society for Vascular Surgery
- SVS Patient Safety Organizations
- Vascular Transplant Services
- Volcano Therapeutics
- Wexler Surgical Supplies

EXHIBITION TIMES

- **Wednesday, March 14**
 - 2:00 pm – 6:30 pm

- **Thursday, March 15**
 - 7:00 am – 11:30 am
 - 11:30 am – 4:00 pm
 - (Dedicated Pavilion times)

- **Friday, March 16**
 - 7:00 am – 5:00 pm

- **Saturday, March 17**
 - 7:30 am – 8:30 am

COMPANIES WITH PAVILIONS

- Covidien
- Gore & Associates
- Medtronic
SCVS SUPPORTERS
The Society for Clinical Vascular Surgery wishes to thank the following companies for their educational grants in support of the 2012 Annual Symposium:

PLATINUM SUPPORTERS
- Cook Medical
- Gore & Associates
- Medtronic

SILVER SUPPORTER
- Bard Peripheral Vascular

INDUSTRY SUPPORTED SYMPOSIA
The SCVS Supported Symposium is not part of the SCVS scientific program and are not eligible for CME credit through the SCVS joint sponsor, CineMed.

Thursday, March 15
12:30 pm – 1:45 pm LUNCHEON SYMPOSIA
Gore & Associates
Dubussy
Above-Knee Revascularization with the GORE Hybrid Vascular Graft: Technique, Advantages and Early Results
Nabeel Rana, MD

From Repositioning to Proper Sizing — Continued Innovation in EVAR and TEVAR From Gore
Mark Farber, MD

Friday, March 16
6:45 am – 8:00 am BREAKFAST SYMPOSIA
Endologix
Chopin 2
Breakfast with the Experts: Challenging EVAR Cases

FUTURE MEETINGS
2013
FONTAINEBLEAU HOTEL
MIAMI BEACH, FLORIDA
MARCH 12–16, 2013

2014
LA COSTA RESORT
CARLSBAD, CALIFORNIA
MARCH 17–22, 2014
AUTHOR/SPEAKER DISCLOSURES

Ciné-Med adheres to ACCME Essential Areas, Standards, and Policies, regarding industry support of continuing medical education. Disclosure of the planning committee and faculty's commercial relationships will be made known at the activity. Speakers are required to openly disclose any limitations of data and/or any discussion of any off-label, experimental, or investigational uses of drugs or devices in their presentations.

Non Endorsement Statement

The content and views presented in this educational activity are those of the faculty and do not necessarily reflect the opinions or recommendations of or Ciné-Med. Inclusion in this activity does not constitute approval or endorsement of any commercial products or services. These materials have been prepared based on the best available information, but are not exhaustive of the subject matter. Participants are advised to critically appraise the information presented and encouraged to consult the available literature for any commercial products mentioned. Accreditation status does not imply endorsement by the Cine-Med of any commercial products displayed in conjunction with an activity.

<table>
<thead>
<tr>
<th>Author</th>
<th>Disclosure Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nick Cheshire</td>
<td>Advisory Board: Medtronic, Medrad Academic Support: Cook, Hansen Medical, Tenaxis</td>
</tr>
<tr>
<td>International Panel</td>
<td>Medical Speakers Bureau: WL Gore Stockholder: Veryan Medical</td>
</tr>
<tr>
<td>Daniel Clair</td>
<td>Consultant: Endologix, WL GORE, Medtronic, Vessix Vascular</td>
</tr>
<tr>
<td>MP27</td>
<td></td>
</tr>
<tr>
<td>Mark Farber</td>
<td>Consultant: Cook Medical, WL Gore, Bolton Medical</td>
</tr>
<tr>
<td>Moderator, 12</td>
<td></td>
</tr>
<tr>
<td>Robert Feezor</td>
<td>Speaking and Teaching: Cook Medical</td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>James Froehlich</td>
<td>Consultant: Merck, Pfizer Research Grant: Bluecross of Michigan, Fibromuscular Disease</td>
</tr>
<tr>
<td>Speaker</td>
<td>Society</td>
</tr>
<tr>
<td>Evan Lipsitz</td>
<td>Research Consultant: Aputus Endosystems,</td>
</tr>
<tr>
<td>Moderator</td>
<td>Cook, CardioMems</td>
</tr>
</tbody>
</table>
Author Disclosure Information

Alan Lumsden
Moderator
Grants: Nycomed, Hansen, Gore, Harvest Tech, Boston Scientific, Lomard Medical, Bolton
Consultant: Boston Scientific, NVUS, Gore, Abbott, Maquet, Medtronic, Siemens
Speaker: Boston Scientific, Gore, Medtronic
Stock Holder: Hatch, Northpoint, Embrella

Luke Marone
Moderator
Consultant: IDEV, EV3

George Metier
Moderator & Speaker
Honorarium: Pfizer and Covidien Research
Support: Abbott, Xbiotech, WL Gore, Cook, Medtronic

Joseph Ricotta II
MP26
Consultant: Cook Medical, Medtronic Inc.

Peter Schneider
Focused Session Speaker
Advisory Board: Abbott Vascular, Medtronic
Participant: Terumo, Cook, Gore, Medtronic
Board Member: VIVA Royalties: Cook Sponsored Studies: Cordis, Abbott Vascular, Gore

Benjamin Starnes
Speaker
Consultant/Advisory Board: Cook Medical and Abbott Vascular

William Quinones-Baldrich
Moderator
Honorarium: WL Gore, Medtronic

All Ciné-Med employees in control of content have indicated that they have no relevant financial relationships to disclose.

Francesco Aiello
Richard Cambria
Mujtaba Ali
Piergiorgio Cao
Javier Anaya-Ayala
Francis Caputo
Shipra Arya
Kevin Casey
Enrico Ascher
Rabih Chaer
Ali Azizzadeh
Thomas Conlee
Andrew Bakken
Daniel Copeland
Iacopo Barbetta
Todd Cumbie
Charudatta Bavare
Clement Darling
Carlos Bechara
Mark Davies
Scott Berman
Barbara Davis
Castigliano Bhamidipati
Trevor DerDerian
Thomas Bower
Sarasiijhaa Desikan
Benjamin Brooke
David Dexter
William Brown
Hasan Dosluoglu
Raphael Byrne
Michael Dudkiewicz
<table>
<thead>
<tr>
<th>Audra Duncan</th>
<th>James McPhee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassidy Duran</td>
<td>Manish Mehta</td>
</tr>
<tr>
<td>Yana Etkin</td>
<td>Andrew Meltzer</td>
</tr>
<tr>
<td>Alik Farber</td>
<td>Ryan Messiner</td>
</tr>
<tr>
<td>Woodrow Farrington</td>
<td>Aleem Mirza</td>
</tr>
<tr>
<td>Ziad Fayad</td>
<td>Doran Mix</td>
</tr>
<tr>
<td>Tanya Flohr</td>
<td>Samuel Money</td>
</tr>
<tr>
<td>Nicholas Gargiulo</td>
<td>Mark Morasch</td>
</tr>
<tr>
<td>Joseph Giglia</td>
<td>Neil Moudgill</td>
</tr>
<tr>
<td>Ramyar Gilani</td>
<td>Albeir Mousa</td>
</tr>
<tr>
<td>Julia Glaser</td>
<td>Leila Mureebe</td>
</tr>
<tr>
<td>Robert Hacker</td>
<td>Erin Murphy</td>
</tr>
<tr>
<td>Nader Hamada</td>
<td>Richard Neville</td>
</tr>
<tr>
<td>Blake Hamby</td>
<td>Ashley Northcutt</td>
</tr>
<tr>
<td>Gabriel Herscu</td>
<td>David O'Connor</td>
</tr>
<tr>
<td>Anil Hingorani</td>
<td>Gustavo Oderich</td>
</tr>
<tr>
<td>Sean Hislop</td>
<td>Nicholas Osborne</td>
</tr>
<tr>
<td>Melanie Hoehn</td>
<td>Tapash Palit</td>
</tr>
<tr>
<td>Kim Hodgson</td>
<td>Simon Papoyan</td>
</tr>
<tr>
<td>Kyle Hunt</td>
<td>Mitul Patel</td>
</tr>
<tr>
<td>James Jen</td>
<td>James Pavela</td>
</tr>
<tr>
<td>William Johnston</td>
<td>Sachin Phade</td>
</tr>
<tr>
<td>Erika Ketteler</td>
<td>Michele Piazza</td>
</tr>
<tr>
<td>Misaki Kiguchi</td>
<td>Clinton Protack</td>
</tr>
<tr>
<td>Scott Kinlay</td>
<td>James Prueter</td>
</tr>
<tr>
<td>Alison Kinning</td>
<td>Qinghua Pu</td>
</tr>
<tr>
<td>Emilia Krol</td>
<td>Ross Ratner</td>
</tr>
<tr>
<td>Robert Lancaster</td>
<td>Thomas Reifsnyder</td>
</tr>
<tr>
<td>Peter Lawrence</td>
<td>Caron Rockman</td>
</tr>
<tr>
<td>Jason Lee</td>
<td>Peter Rossi</td>
</tr>
<tr>
<td>William Lee</td>
<td>Vincent Rowe</td>
</tr>
<tr>
<td>Steven Leers</td>
<td>Trisha Roy</td>
</tr>
<tr>
<td>Elizabeth Levin</td>
<td>Russell Samson</td>
</tr>
<tr>
<td>Wesley Lew</td>
<td>Salvatore Scali</td>
</tr>
<tr>
<td>Christos Liapis</td>
<td>Salvatore Scali</td>
</tr>
<tr>
<td>Ruby Lo</td>
<td>Eric Shang</td>
</tr>
<tr>
<td>Joann Lohr</td>
<td>Kyla Shelton</td>
</tr>
<tr>
<td>Rafael Malgor</td>
<td>Sharvil Sheth</td>
</tr>
<tr>
<td>Michael Malinowski</td>
<td>Jeffrey Siracuse</td>
</tr>
<tr>
<td>M. Ashraf Mansour</td>
<td>Matthew Smeds</td>
</tr>
<tr>
<td>Michelle Martin</td>
<td>Christopher Smolock</td>
</tr>
<tr>
<td>Michael Martinez</td>
<td>Pet Stadler</td>
</tr>
<tr>
<td>Loren Masterson</td>
<td>Gregory Stanley</td>
</tr>
<tr>
<td>Mika Matthews</td>
<td>W. Charles Sternbergh, III</td>
</tr>
<tr>
<td>Amanda McClure</td>
<td>Charles Strom</td>
</tr>
<tr>
<td>Robert McLafferty</td>
<td>Bjoern Suckow</td>
</tr>
</tbody>
</table>
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

Rami Tadros
Tiziano Tallarita
Kevin Taubman
Carlos Timaran
Mina Todorov
Brant Ullery
Andrew Unzeitig
Gilbert Upchurch
Frank Vandy
Todd Vogel
Jason Wagner

Fred Weaver
Travis Webb
Matthew White
Jonathan Woody
Madian Yahya
Danny Yakoub
Theodore Yuo
Mohamed Zayed
Wei Zhou
Jill Zink
SCVS • 40TH ANNUAL SYMPOSIUM ON VASCULAR SURGERY

SOCIETY FOR CLINICAL VASCULAR SURGERY

40th Annual Symposium

March 13–17, 2012

Las Vegas, Nevada

SCHEDULE AT A GLANCE

Tuesday, March 13

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 pm – 3:10 pm</td>
<td>SCVS FELLOWS PROGRAM— PART I (Dubussy)</td>
</tr>
<tr>
<td>3:10 pm – 5:30 pm</td>
<td>SCVS Fellows Technology Showcase (Brahms 2 & 3)</td>
</tr>
<tr>
<td>6:00 pm – 8:00 pm</td>
<td>SCVS FELLOWS RECEPTION Brahms Patio (Rain Backup – Brahms Ballroom)</td>
</tr>
</tbody>
</table>

Wednesday, March 14

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 am – 12:00 pm</td>
<td>SCVS FELLOWS PROGRAM— PART II (Dubussy)</td>
</tr>
<tr>
<td>12:30 pm – 1:45 pm</td>
<td>FOCUSED SESSION— What Made Vascular News in 2011? (Encore 4-8)</td>
</tr>
</tbody>
</table>
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

1:45 pm – 3:15 pm SCIENTIFIC SESSION 1—LOWER EXTREMITY ARTERIAL DISEASE I
(Encore 4-8)

2:00 pm – 6:30 pm EXHIBITION HALL HOURS
(continuous beverage service)
(Encore 1-3)

3:15 pm – 4:00 pm COFFEE BREAK IN EXHIBIT HALL & ePOSTER VIEWING
(Encore 1-3)

4:00 pm – 5:30 pm SCIENTIFIC SESSION 2—VENOUS & HEMODIALYSIS ACCESS
(Encore 4-8)

5:30 pm – 6:30 pm WELCOME RECEPTION in Exhibit Hall
(Encore 1-3)

5:30 pm – 8:30 pm INCOMING FELLOWS PROGRAM—PART I
(Chopin 4)

Thursday, March 15

7:00 am – 8:00 am SPECIAL INTEREST GROUP CONCURRENT SESSIONS
Challenging Cases: Peripheral & Other
(Chopin 2)

Challenging Cases: Abdominal Aortic
(Chopin 3)

7:00 am – 8:00 am CONTINENTAL BREAKFAST WITH INDUSTRY
(Encore 1-3)

7:00 am – 11:30 am EXHIBITION HALL HOURS
(continuous beverage service)
(Encore 1-3)
SCVS • 40TH ANNUAL SYMPOSIUM ON VASCULAR SURGERY

8:15 am – 9:30 am SCIENTIFIC SESSION 3—
CAROTID DISEASE
(Encore 4-8)

9:30 am – 10:00 am COFFEE BREAK IN EXHIBIT HALL &
ePOSTER VIEWING
(Encore 1-3)

10:00 am – 11:15 am SCIENTIFIC SESSION 4—
THORACIC AORTIC DISEASE
(Encore 4-8)

11:15 am – 12:00 pm DISTINGUISHED VISITING PROFESSOR
(Encore 4-8)

12:00 pm – 12:30 pm SOCIETY FOR VASCULAR MEDICINE (SVM)
SCIENTIFIC SESSION
(Encore 4-8)

12:00 pm – 5:00 pm INCOMING FELLOWS PROGRAM—
PART II
(Chopin 4)

12:30 pm FREE AFTERNOON/PAVILION TIME

12:30 pm – 1:45 pm CONCURRENT LUNCHEON SYMPOSIA
(Debussy)
Supported by: Gore & Associates
(Chopin 3)
Supported by: Covidien

6:00 pm – 9:00 pm SCVS VASCULAR TOP GUN COMPETITION
(Debussy)

6:00 pm – 9:00 pm SCVS YOUNG VASCULAR SURGEONS
DINNER SYMPOSIUM
(Chopin 2)
Friday, March 16

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
</table>
| 6:45 am – 8:00 am| BREAKFAST SYMPOSIUM
(Chopin 2)
Supported by: Endologix |
| 7:00 am – 8:00 am| CONTINENTAL BREAKFAST WITH INDUSTRY
(Encore 1-3) |
| 7:00 am – 5:00 pm| EXHIBITION HALL HOURS
(*continuous beverage service*)
(Encore 1-3) |
| 8:15 am – 9:40 am| SCIENTIFIC SESSION 5—AORTIC ANEURSYM
(Encore 4-8) |
| 9:40 am – 10:15 am| COFFEE BREAK IN EXHIBIT HALL & ePOSTER VIEWING
(Encore 1-3) |
| 10:15 am – 11:15 am| INTERNATIONAL PANEL
(Encore 4-8) |
| 11:20 am – 12:20 pm| PRESIDENTIAL ADDRESS
(Encore 4-8) |
| 12:30 pm – 1:30 pm| MEMBERS’ BUSINESS LUNCHEON
(Chopin 2-3) |
| 12:30 pm – 1:30 pm| LUNCH WITH INDUSTRY
(Encore 1-3) |
| 1:30 pm – 2:15 pm| KARMODY POSTER COMPETITION—Round 1
(Encore 4-8) |
| 2:15 pm – 3:45 pm| FOCUSED SESSION
Pushing the Limits of Vascular Technology
(Encore 4-8) |
| 3:45 pm – 4:15 pm| COFFEE BREAK IN EXHIBIT HALL & ePOSTER VIEWING
(Encore 1-3) |
4:15 pm – 5:00 pm SCIENTIFIC SESSION 6—LOWER EXTREMITY ARTERIAL DISEASE II
(Encore 4-8)
6:00 pm – 8:00 pm ANNUAL BANQUET
(XS Nightclub)

Saturday, March 17

7:30 am – 8:30 am SPECIAL INTEREST GROUP CONCURRENT SESSIONS
Challenging Cases: Thoracic Aortic
(Chopin 2)

Challenging Cases: Venous & Dialysis Access
(Chopin 3)

7:30 am – 8:30 am CONTINENTAL BREAKFAST WITH INDUSTRY
(Encore 1-3)
7:30 am – 8:30 am EXHIBITION HALL HOUR
(Encore 1-3)

8:45 am – 9:45 am SCIENTIFIC SESSION 7—TECHNOLOGY/MISCELLANEOUS I
(Encore 4-8)

9:45 am – 10:45 am TO BE OR NOT TO BE—SURGEONS AS HOSPITAL EMPLOYEES DEBATE
(Encore 4-8)

10:45 am – 11:30 am KARMODY POSTER COMPETITION—Final Round
(Encore 4-8)

11:30 am – 12:30 pm SCIENTIFIC SESSION 8—TECHNOLOGY/MISCELLANEOUS II
(Encore 4-8)

12:30 pm MEETING ADJOURN
FULL PROGRAM

Tuesday, March 13

12:00 pm – 5:30 pm SCVS FELLOWS PROGRAM—
PART I
(Dubussy)
Supported by: Gore & Associates
*Fellows Program is not part of the SCVS scientific
program and are not eligible for CME credit through
the SCVS joint sponsor.

12:00 pm – 1:00 pm Buffet Lunch/Welcome: Your Career
Richard F. Neville, MD & William D. Jordan, MD

1:00 pm – 1:20 pm Shaping Your Vascular Surgery Career
Peter F. Lawrence, MD

1:20 pm – 1:40 pm Continuing Academic Contributions While in
Private Practice
Russell H. Samson, MD
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:40 pm – 2:00 pm</td>
<td>Reimbursement Effects on Practice</td>
</tr>
<tr>
<td></td>
<td>Sean P. Roddy, MD</td>
</tr>
<tr>
<td>2:00 pm – 2:30 pm</td>
<td>Break</td>
</tr>
<tr>
<td>2:30 pm – 2:50 pm</td>
<td>What You Bring to Your Institution</td>
</tr>
<tr>
<td></td>
<td>Michael C. Stoner, MD</td>
</tr>
<tr>
<td>2:50 pm – 3:10 pm</td>
<td>Panel Discussion with the Day’s Presenters</td>
</tr>
<tr>
<td>3:10 pm – 3:30 pm</td>
<td>Technology Showcase—Gore Product Demonstrations</td>
</tr>
<tr>
<td></td>
<td>(Brahms 2 & 3)</td>
</tr>
<tr>
<td>5:30 pm</td>
<td>ADJOURN</td>
</tr>
<tr>
<td>6:00 pm – 8:00 pm</td>
<td>SCVS FELLOWS RECEPTION</td>
</tr>
<tr>
<td></td>
<td>Brahms Patio (Rain Backup – Brahms Ballroom)</td>
</tr>
<tr>
<td></td>
<td>*Fellows Program is not part of the SCVS scientific</td>
</tr>
<tr>
<td></td>
<td>program and are not eligible for CME credit through</td>
</tr>
<tr>
<td></td>
<td>the SCVS joint sponsor.</td>
</tr>
</tbody>
</table>

Wednesday, March 14

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 am – 12:00 pm</td>
<td>SCVS FELLOWS PROGRAM— PART II (Dubussy)</td>
</tr>
<tr>
<td></td>
<td>*Fellows Program is not part of the SCVS scientific</td>
</tr>
<tr>
<td></td>
<td>program and are not eligible for CME credit through</td>
</tr>
<tr>
<td></td>
<td>the SCVS joint sponsor.</td>
</tr>
<tr>
<td>7:00 am – 8:00 am</td>
<td>Breakfast/Opening Remarks: Surviving on the Business Side</td>
</tr>
<tr>
<td></td>
<td>Richard F. Neville, MD & William D. Jordan, MD</td>
</tr>
<tr>
<td>8:00 am – 8:20 am</td>
<td>Medical Malpractice</td>
</tr>
<tr>
<td></td>
<td>O. William Brown, MD</td>
</tr>
<tr>
<td>8:20 am – 8:40 am</td>
<td>Awareness Outreach</td>
</tr>
<tr>
<td></td>
<td>Manish Mehta, MD</td>
</tr>
<tr>
<td>8:40 am – 9:00 am</td>
<td>Employment Contracts</td>
</tr>
<tr>
<td></td>
<td>Russell H. Samson, MD</td>
</tr>
<tr>
<td>9:00 am – 9:30 am</td>
<td>Break</td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>9:30 am – 9:50 am</td>
<td>Partnership/Real Estate Deals</td>
</tr>
<tr>
<td></td>
<td>O. William Brown, MD</td>
</tr>
<tr>
<td>9:50 am – 10:10 am</td>
<td>Panel Discussion with the Day’s Presenters</td>
</tr>
<tr>
<td>10:10 am – 11:00 am</td>
<td>Vascular Jeopardy!</td>
</tr>
<tr>
<td></td>
<td>Richard F. Neville, MD & William D. Jordan, MD</td>
</tr>
<tr>
<td>11:00 am – 11:30 pm</td>
<td>Wrap-Up Discussion and Final Q&A</td>
</tr>
<tr>
<td>11:30 am – 12:00 pm</td>
<td>Lunch with SCVS Executive Committee</td>
</tr>
<tr>
<td>9:00 am – 5:00 pm</td>
<td>REGISTRATION DESK</td>
</tr>
<tr>
<td></td>
<td>(Promenade)</td>
</tr>
<tr>
<td>9:00 am – 5:00 pm</td>
<td>SPEAKER READY</td>
</tr>
<tr>
<td></td>
<td>(Schubert)</td>
</tr>
<tr>
<td>11:30 am – 12:30 pm</td>
<td>FELLOWS LUNCH</td>
</tr>
<tr>
<td></td>
<td>(Debussy)</td>
</tr>
<tr>
<td></td>
<td>*Fellows Program is not part of the SCVS scientific program and are not eligible for CME credit through the SCVS joint sponsor.</td>
</tr>
<tr>
<td>10:00 am – 5:00 pm</td>
<td>KARMODY POSTER SETUP</td>
</tr>
<tr>
<td></td>
<td>(Encore 4-8)</td>
</tr>
<tr>
<td>2:00 pm – 6:30 pm</td>
<td>EXHIBITION HALL HOURS</td>
</tr>
<tr>
<td></td>
<td>(continuous beverage service)</td>
</tr>
<tr>
<td></td>
<td>(Encore 1-3)</td>
</tr>
</tbody>
</table>
12:30 pm – 1:45 pm
FOCUSED SESSION—
What Made Vascular News in 2011?
(Encore 4-8)
Moderated by: Fred A. Weaver, MD
Joann M. Lohr, MD

SPEAKERS:
Aorta and Aneurysm News
Thomas C. Bower, MD
Mayo Clinic, Rochester, MN

Carotid and Stroke News
Jason T. Lee, MD
Stanford University Medical Center, Stanford, CA

Lower Extremity News
Vincent L. Rowe, MD
LAC/USC Medical Center, Los Angeles, CA

Hemodialysis/Vascular Access News
Scott S. Berman, MD
Tucson Vascular Surgery, Tucson, AZ

Venous News
Peter F. Lawrence, MD
UCLA, Gonda Vascular Center, Los Angeles, CA

Best of the Rest
Anil P. Hingorani, MD
Maimonides Medical Center, Brooklyn, NY
OBJECTIVE: To compare patency of endovascular (ER) and open repair (OR) of popliteal artery aneurysms (PAA) and determine predictors of failed revascularization. The focus is mid-term patency, as only early outcomes of ER are well known.

METHODS: A retrospective review of all patients treated for PAA from 2004–2010 was conducted at one institution. Indications for and details of repair, patient characteristics, and outcomes were reviewed. Kaplan-Meier curves were used to estimate patency rates. Multivariate analysis was performed to determine factors predictive of patency.

RESULTS: A total of 161 PAs underwent endovascular repair in 50 and open surgical repair in 111 (8.0% and 20.7% emergent respectively p = .067). Follow-up was available for 151 repairs and mean follow-up time was 29.7 (±2.4) months. The average age of patients at the time of repair was 70.6 (±12.7) and 96% were male. Of the bypass group, 72.1% were performed with native conduit. Operative mortality was 2.0% for the ER group and 3.6% for the OR group (p = 1). ER had a significantly lower complication rate (14.0% vs 32.4% p = .020) and shorter LOS (median 1 vs 4 days p = < .001). Rates of reintervention to maintain patency were similar (12.2% and 10.8% p = .789). Two year primary patency rate was 83.3% for ER, and 80.0% for OR (p = .779); overall patency was 96.7% and 87.3% (p = .250) respectively. There was one amputation in each group, both in the setting of a patent bypass. Overall limb salvage rate was 98.0% with ER and 99.1% with OR (p = .526). SVS runoff scores were significantly better in the bypass group (Mean 9.2 vs 4.8, p = < .01). Univariate analysis revealed plavix (p = .037), and antegrade puncture (p = .048) in the ER group and statin use (p = .027) in the OR group were associated with improved patency. Multivariate analysis revealed only statin use to be protective overall (p = .027).

* Peter B. Samuels Finalist.
CONCLUSION: Endovascular and bypass techniques for PAA repair have equivalent mid-term patency, limb salvage and reintervention rates. Endovascular repair is a valid option for patients presenting with favorable runoff scores and is associated with a lower complication rate and shorter hospital length of stay.
OBJECTIVES: Native venous conduit is preferred in below-knee vascular reconstructions. However, many argue that prosthetic grafts can perform well in crural bypass with adjunctive antithrombotic therapy. We therefore compared outcomes of below-knee bypass grafts using prosthetic conduit with adjunctive antithrombotic therapy to those using autologous vein.

METHODS: Utilizing the Vascular Study Group of New England registry (2003–2009), we studied 308 patients with a prosthetic graft to the below-knee popliteal artery (76%) or more distal target (24%). We used propensity matching to identify a patient cohort who received single-segment saphenous vein (GSV) yet remained similar to the prosthetic cohort in terms of patient characteristics, graft origin/target and antithrombotic regimen (Table 1). Main outcome measures were graft patency and major adverse limb events (MALE = ipsilateral amputation, graft revision or thrombectomy/thrombolysis) within one year. Secondary outcomes were bleeding complications (re-operation or transfusion) and mortality. We performed comparisons by conduit type and by antithrombotic therapy.

RESULTS: Patients receiving prosthetic conduit were more likely to be treated with warfarin than those with GSV (51% versus 22%, p < 0.001). Prosthetic grafts with tibial targets received the most aggressive antithrombotic combination (aspirin+clopidogrel+warfarin) more commonly than popliteal targets (26% versus 9%, p < 0.001). At one year, we found no significant difference in primary or secondary outcomes by conduit type (Table 2). While 1-year prosthetic graft patency rates varied from 68% (aspirin+clopidogrel+warfarin) to 82% (aspirin), no significant differences were seen in primary patency or MALE by antithrombotic therapy (p = 0.32 and 0.8, respectively). Further, the incidence of bleeding complications and 1-year mortality in prosthetic graft patients was similar among antithrombotic regimens.

* Peter B. Samuels Finalist.
CONCLUSIONS: While limited in size, our study demonstrates that, with appropriate patient selection and antithrombotic therapy, 1-year outcomes for below-knee prosthetic grafts can be comparable to greater saphenous vein conduit.
Remote Iliac Artery Endarterectomy
Simon A. Papoyan, Jr., MD, Derenik Maytesyan, MD, Igor Abramov, MD
Moscow Municipal Hospital, Moscow, Russian Federation

OBJECTIVE: Remote endarterectomy of external and common iliac artery occlusions through a single, groin incision under fluoroscopic guidance is a relative unknown surgical procedure. This prospective single center cohort study describes this less invasive endovascular technique with the ring strip cutter and its early complications. The results at midterm follow-up are presented.

PATIENTS AND METHODS: From April 2004 to July 2010, 49 remote-endarterectomies of the external or common iliac artery were performed in a retrograde manner from a single, groin incision in 48 patients (30 men, 31 procedures). The median age was 66 years (39 to 82 years). Indications for operation were as follows: severe claudication in 28 (57%), rest pain in 13 (27%), and gangrene in 8 (16%) procedures. Follow-up included clinical evaluation, ankle-brachial index, and duplex scanning at 6 weeks, 3 months, and yearly thereafter.

RESULTS: Intraoperative technical success was achieved in 43 (88%) procedures. A retroperitoneal incision was necessary in three patients for an additional arteriotomy in the iliac artery and in three others for a bypass procedure. The mean follow-up was 20 months (2 to 77 months). Three-year cumulative primary patency rate by means of life table analysis was 60.2% ± 12.0 (SE). During follow-up, percutaneous transluminal balloon angioplasty with and without stenting was performed in six and two patients, respectively, resulting in a 3-year primary-assisted patency rate of 85.7% ± 9.56.

Three-year secondary patency was 94.2% ± 5.50.

CONCLUSIONS: Remote endarterectomy in external and common iliac arterial occlusive disease is a feasible endovascular procedure with a low complication rate. The midterm primary-assisted patency rate is good.
OBJECTIVE: Lower extremity (LE) amputation is often performed in patients where both limbs are at risk due to vascular disease, yet the proportion of patients who progress to amputation on their contralateral limb is not well defined. We sought to determine the rate of subsequent amputation on both the ipsilateral and contralateral limbs following initial amputation.

METHODS: We conducted a retrospective review of all patients undergoing LE amputation for vascular disease at an academic tertiary care center from 1998–2010. ICD-9 codes identified patients and procedures, as well as comorbidities. Outcomes included the proportion of patients undergoing contralateral and/or ipsilateral amputation stratified by major or minor amputation at 1 and 5 years. Multivariable analysis was performed to determine predictors of major contralateral amputation.

RESULTS: We identified 1751 patients (2534 procedures). Mean age was 67 years; 63% were male. A majority (52%) of procedures were performed on diabetics. Many of the procedures (64%) were minor amputations (toe or ray). After minor amputation 11% and 19% had an ipsilateral major amputation at 1 and 5 years while 3% and 9% had a contralateral major amputation at 1 and 5 years. After major amputation 5% and 11% have a contralateral major amputation at 1 and 5 years. Multivariate analysis indicated that female gender (OR1.5 [1.1–2.2] p = 0.02), diabetes (OR2.2 [1.5–3.2] p < 0.001), end stage renal disease (OR1.9 [1.0–3.5] p = 0.04), and initial major amputation (OR1.5 [1.1–2.2] p = 0.02) were all independent predictors of subsequent major contralateral amputation.

CONCLUSIONS: Rates of contralateral limb amputation vary by the level of the initial procedure. The majority of subsequent LE amputations occur within the first year. A high risk group of patients may be identified for improved surveillance and counseling.
MP2. Endoconduits to Facilitate Endovascular Repair of Aortic Aneurysms in High-Risk Patients with Difficult Iliac Access

Tiziano Tallarita, MD, Gustavo S. Oderich, MD, Alexandre A. Pereira, MD
Mayo Clinic, Rochester, MN

PURPOSE: This study describes the technique and outcomes of endovascular conduits to facilitate endovascular aortic aneurysm repair in patients with difficult iliac access.

METHODS: We reviewed the clinical data of all consecutive patients treated by endovascular aortic aneurysm repair using endovascular conduits (2006–2010). Endoconduits were indicated in high-risk patients with small or occluded iliac arteries. Inadvertent hypogastric artery occlusion was avoided in patients with thoracic or thoracoabdominal aneurysms (TAAA) to minimize risk of spinal cord injury. The endoconduit technique consisted of controlled iliac artery disruption using >9 mm self-expandable stent grafts (Figure 1) or angioplasty and stenting for recanalization of larger iliac arteries. End-points were technical success, morbidity, mortality, patency and freedom from re-interventions.

RESULTS: There were 11 patients, 10 male and 1 female, with mean age of 74 ± 8 years. Aneurysm extent was infrarenal in 7 patients, pararenal in 3 (Figure 2) and TAAA in 1. The inner iliac artery diameter averaged 5 ± 2 mm. The endoconduit included the external iliac artery in all patients, and extended into the common iliac artery in 7. A patent hypogastric artery was sacrificed in 4 patients. The
average stent diameter and length was 11 ± 1 and 84 ± 24 mm, respectively. Technical success was achieved in all cases, allowing introduction of 20 to 24 Fr sheaths. Endovascular repair required infrarenal bifurcated stent grafts in 7 patients and fenestrated endografts in 4. There were no operative deaths. Four patients had postoperative complications including respiratory failure, minor stroke, renal insufficiency and iliac limb kink in one patient each. There were no pelvic ischemic complications, spinal cord injuries or uncontrolled arterial disruptions. After a median follow up of 28 months, all endoconduits remained patent. One patient required muscle flap coverage for late groin wound infection.

CONCLUSION: Endovascular conduits are useful to facilitate endovascular aortic aneurysm repair in patients with difficult iliac access because of small size or occluded iliac arteries. The technique is safe, effective and has excellent patency.
MP3. Embolic Protection Devices Below the Knee for Critical Limb Ischemia Interventions: Initial Results

James Jen, MD1, Robert A. Lookstein, MD1, Sharif H. Ellozy, MD1, Michael L. Marin, MD1, Henry Jen, BA2, Peter L. Faries, MD1

1Mount Sinai Hospital, New York, NY, 2Stony Brook Medical School, Stony Brook, NY

OBJECTIVES: To assess the safety and efficacy of the use of a distal embolic protection device in below-the-knee vessels in patients with critical limb ischemia and single-vessel runoff.

METHODS: Retrospective review of 30 consecutive patients treated at a single institution over a 5 year period. All patients were Rutherford class 4–6 and had single-vessel runoff. The technical success rate, the target vessel, the level of disease, the runoff before and after the intervention, the nature of the intervention, complications related to the use of the filter, the incidence of macroscopic debris, complete occlusion of the filter and target vessel with debris, and limb salvage at 30 days were examined.

RESULTS: Technical success with delivery of the device to the runoff vessel and successful retrieval was 100%. The most common target vessel for the device was the peroneal artery 43.3% (n = 13), followed by the anterior tibial artery 40% (n = 12) and the posterior tibial artery 16.7% (n = 5). Multisegmental disease was treated in 76.7% of patients (n = 23). Femoral-popliteal disease alone was treated in 13.3% (n = 4) and tibial disease alone was treated in 10% (n = 3). Single vessel runoff was demonstrated before and after the intervention in 100% of cases. Stenting was utilized in 80% (n = 24) of interventions. Laser or rotational atherectomy was used in 16.7% (n = 5). Pharmacomechanical thrombolysis was used in 23.3% (n = 7). Acute occlusions comprised 10% (n = 3). The only complication attributable to the embolic protection device was spasm which was seen in 6.7% (n = 2) and in both cases resolved with use of vasodilators. Macroscopic debris was visualized on fluoroscopy in 53.3% (n = 16). No reflow phenomena was seen in 13.3% (n = 4) which resolved with removal of the filter. Limb salvage at 30 days was 100%.

CONCLUSIONS: The use of a distal embolic protection device in below-the-knee vessels is a safe method of protecting single vessel runoff in patients with critical limb ischemia. Technical success was achieved in all patients in each of the tibio-peroneal vessels. Complex interventions involving multisegmental disease and a variety of techniques resulted in a majority of patients having fluoroscopically visualized debris in the filter with some patients having total occlusion of the filter prior to retrieval. Distal runoff was preserved in all cases and there was no limb loss in the short term.
MP4. Predicting Success of Endovascular Intervention in Anatomically Unfavorable Femoropopliteal Disease

Andrew J. Meltzer, MD, Gautam V. Shrikhande, MD, In-Kyong Kim, MD, Francesco A. Aiello, MD, James F. McKinsey, MD
New York-Presbyterian Hospital, New York, NY

OBJECTIVES: Guidelines addressing the appropriateness of endovascular therapy for peripheral arterial disease may lag behind contemporary practice patterns; endovascular therapy for TASC C/D femoropopliteal disease is frequently performed. Application of a comprehensive prediction model to anatomically unfavorable femoropopliteal disease may clarify the appropriateness of endovascular therapy in TASC C/D lesions.

METHODS: Retrospective review of a prospectively maintained database identified 500 consecutive endovascular interventions for TASC C/D femoropopliteal interventions. A previously reported, comprehensive clinical prediction model for long-term patency after endovascular intervention based on 8 variables (runoff, % stenosis, complete occlusion, length, calcification, smoking status, diabetes, and heart failure) was applied. The predictive power of the 8-variable model was evaluated at defined endpoints (6 and 12 months). Comparisons were made using standard techniques (Chi-square, ROC curve analysis).

RESULTS: Of 500 treated limbs, 375 (75%) were TASC C; 125 (25%) were TASC D. Overall primary patency was 54.4% and 32.6% at 6 and 12 months, respectively. At 12 months, there was no statistically significant difference between primary patency of TASC C vs. TASC D lesions (34.2% vs. 29.7%; P = 0.320). Mean endovascular disease severity score (DSS) was 7.2 ± 2.7 points (of a maximum 16). Higher DSS (>8, n = 254) was associated with reduced patency at 6 months (49.2% vs. 62%; P = 0.005) and 12 months compared to DSS 9 (n = 108) was associated with 24.6% 12-month primary patency, compared to 46.5% 12-month primary patency among those with DSS < 4. While weakly correlated to TASC classification (R = 0.424), the endovascular disease severity score demonstrated improved discrimination of patency at 12 months compared to TASC classification by ROC comparison (C-index: 0.62, P < .001).

CONCLUSIONS: Overall, endovascular therapy for TASC C/D femoropopliteal disease is associated with poor primary patency. There is, however, significant variability in outcomes after endovascular treatment of unfavorable lesions that is not predicted by TASC classification. Here, we validate a comprehensive clinical model on a sub-group of patients with severe femoropopliteal disease. Application of such disease scoring methods may be used to predict outcomes and guide choice of therapy.
MP5. Presentation, Treatment, and Outcome Differences Between Men and Women Undergoing Revascularization or Amputation for Lower Extremity Peripheral Arterial Disease

Ruby C. Lo, MD, Rodney P. Bensley, MD, Robina Matyla, MD, Frank Pomposelli, MD, Allen Handan, MD, Mark Wyers, MD, Elliot Chaikof, MD, Marc L. Schermerhorn, MD

BIDMC, Boston, MA

OBJECTIVE: Prior studies have suggested treatment and outcome disparities between men and women for lower extremity peripheral arterial disease (PAD). Given the recent shift towards endovascular therapy, we sought to analyze gender disparities in interventions, amputations, and inpatient mortality based on presentation (limb threat vs. claudication).

METHODS: We identified patients with lower extremity arterial occlusive disease, subdivided into intermittent claudication (IC) vs. limb threat (LT) using ICD-9 codes in the Nationwide Inpatient Sample (NIS) from 1995 to 2009. We compared open surgery (endarterectomy, aortobifemoral bypass, peripheral bypass) to PTA ± stent (PTA/S). Results were indexed to the population using U.S. Census Bureau data.
RESULTS: We identified 343,237 patients (56.9% male) who underwent treatment, 62.9% for LT. Women were older by 2.6 years on average and more likely to present with LT (Figure, p < 0.05 for all years). Women were more likely to receive PTA/S for both IC and LT (p < 0.05). Women had higher rates of major amputation prior to 2000, similar rates from 2000–2005 and lower rates after 2005. After an initial steady climb from 1995–2006, we observed a drop in the rate of endovascular revascularization after 2007 for both IC and LT while rates of bypass remained stable. Overall amputation rates continue to decline despite the recent decline in PTA/S. Over the study period, women had higher in-hospital mortality for both IC (PTA/S 0.6% vs. 0.3%, p < 0.0001, Surgery 1.2% vs. 0.8%, p < 0.0001) and CLI (PTA/S 3.6% vs. 3.0%, p < 0.0001, Surgery 3.8% vs. 3.2%, p < 0.0001).

CONCLUSIONS: Women with PAD appear to present at a later stage, are more likely to be treated with PTA/S, and have higher in-hospital mortality. Surprisingly, amputation rates among women are now similar/lower than for men. Enthusiasm for PTA/S appears to be declining. Despite this, amputation rates continue to decline.
MP6. Immediate Post-Operative Prosthesis Following Trans-Tibial Amputation: Comparative Analysis of a Contemporary Series

Mujtaba M. Ali, MD1, Lorraine Loretz, NP, DPM1, Art Shea, BA, CPO2, Eli Poorvu, BS1, Andres Schanzer, MD3, Louis M. Messina, MD1, Donald T. Baril, MD1

1University of Massachusetts Medical School, Worcester, MA, 2New England Orthotic and Prosthetic Systems, Worcester, MA

OBJECTIVE: Post-operative management of trans-tibial amputations is traditionally done with soft compressive dressings over the stump to allow for complete healing and reduction in edema prior to fitting of the initial prosthesis. A prolonged period of limited mobility is necessary with this technique, placing patients at risk for muscle weakness, body de-conditioning, joint stiffness, or fall injury to the stump. The use of an immediate post-operative prosthesis (IPOP) allows patients to begin ambulation and rehabilitation on post-operative day one which can be of great psychological benefit. The purpose of this study is to compare outcomes of a series of patients undergoing IPOP to a historical control group of patients undergoing traditional trans-tibial amputations.

METHODS: Records of all patients undergoing trans-tibial amputations performed in traditional manner who were IPOP candidates (35 patients in 2006–2007) along with patients undergoing IPOP (37 patients in 2007–2010) were retrospectively reviewed. Patients considered for IPOP were ambulatory pre-operatively and had expected compliance to the post-operative protocol. Patient co-morbidities and preoperative ambulation status were compared. Preoperatively non-ambulatory patients were excluded from the control group. The data was analyzed using student’s t-test (two tail analysis, assuming unequal variance). Significance was set at p-value of 0.05.

RESULTS: Preoperative patient characteristics of the two groups were similar, although the IPOP group was younger (see Table).

<table>
<thead>
<tr>
<th>Preoperative Characteristic</th>
<th>Non-IPOP</th>
<th>IPOP</th>
<th>pValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>69.0</td>
<td>61.5</td>
<td>0.010</td>
</tr>
<tr>
<td>Gender (% male)</td>
<td>68.6%</td>
<td>83.8%</td>
<td>0.135</td>
</tr>
<tr>
<td>Hypertension</td>
<td>85.7%</td>
<td>70.3%</td>
<td>0.116</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>74.3%</td>
<td>89.2%</td>
<td>0.067</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>71.4%</td>
<td>81.1%</td>
<td>0.344</td>
</tr>
<tr>
<td>Chronic Renal Failure</td>
<td>34.3%</td>
<td>43.2%</td>
<td>0.442</td>
</tr>
<tr>
<td>Hemodialysis</td>
<td>20.0%</td>
<td>18.9%</td>
<td>0.909</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>60.0%</td>
<td>56.8%</td>
<td>0.784</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>71.4%</td>
<td>81.1%</td>
<td>0.574</td>
</tr>
<tr>
<td>Ambulatory without assistance</td>
<td>100%</td>
<td>97.3%</td>
<td>0.324</td>
</tr>
</tbody>
</table>
Immediate peri-operative complication rates were not significantly different (non-IPOP 31.4% vs. IPOP 29.7%, p = 0.878). Post-operative complication rates were as follows: wound infection (non-IPOP 25.0% vs. IPOP 18.9%, p = 0.568), wound dehiscence (non-IPOP 25.0% vs. IPOP 29.7%, p = 0.677), skin breakdown separate from incision (non-IPOP 3.6% vs. IPOP 18.9%, p = 0.044), and fall (non-IPOP 21.4% vs. IPOP 10.8%, p = 0.266). The need for revision was significantly greater in the non-IPOP group (non-IPOP 27.6% vs. IPOP 5.4%, p = 0.021). The time from surgery to placement of the definitive leg was 51 days in the IPOP group.

CONCLUSION: Patients undergoing IPOP had similar complication rates as those undergoing the traditional method but were less likely to require surgical revision. The use of IPOP is of great psychological benefit to the patient and allows for early ambulation and rehabilitation. It should be considered for all appropriate candidates undergoing trans-tibial amputation.
MP7. Preoperative Statins and Amputation-Free Survival After Lower Extremity Revascularization in the U.S. Medicare Population
Todd R. Vogel, MD, MPH, Viktor Y. Dombrovskiy, MD, MPH, PhD, Alan M. Graham, MD
University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ

OBJECTIVES: Statin usage has been shown to stabilize atherosclerotic plaque, decrease mortality after surgical procedures, and is linked to anti-inflammatory effects. The objective of this study was to evaluate preoperative administration of statins and longitudinal amputation-free survival after lower extremity (LE) revascularization.

METHODS: Patients were selected from the Medicare MedPAR, Carrier, and Part D files (2007–2008) using ICD-9-CM diagnosis codes (claudication, rest pain, and ulceration/gangrene) and CPT codes for LE endovascular revascularization (ENDO) and LE open surgery (OPEN). Amputations over time were identified using CPT codes and preoperative statin use was identified by querying the National Drug Code Directory and Part D files. Chi-square test, multivariable logistic regression, Kaplan-Meier and Cox regression methods were utilized.

RESULTS: 22,954 patients undergoing LE vascular procedures (14,353 ENDO and 8,601 OPEN) were identified. Indications included: Claudication (8,128); Rest pain (3,056); and Ulceration/gangrene (11,770). 11,687 (50.9%) were identified as statin users before revascularization. Overall, statin users compared to non-users had lower amputation rates at 30 days (11.5% vs. 14.4%; P < 0.0001), 90 days (15.5% vs. 19.3%; P < 0.0001) and 1 year (20.9% vs. 25.6%; P < 0.0001). This association was noted after both ENDO and OPEN. Multivariate logistic regression adjusted by age, gender, race, comorbidities, and procedure demonstrated non-statin users were more likely to undergo amputation at 30 days (OR = 1.26; 95% CI 1.16–1.36), 90 days (OR = 1.28; 95% CI 1.19–1.38), and 1 year (OR = 1.30; 95% CI 1.22–1.39). Survival analysis demonstrated improved amputation-free survival during 1 year for statin-users compared to non-users for the diagnosis of claudication (P = 0.0025), a similar trend for rest pain (P = 0.059), and no improvement for ulceration/gangrene (P = 0.61). Statin users with a diagnosis of claudication underwent secondary bypass at 30 days (0.90%) and 90 days (1.91%) at a significantly lower rate compared to non-statin users (1.48%; P = 0.04 and 3.00%; P = 0.008, respectively). This association was not found with other procedure indications.
CONCLUSIONS: Overall, preoperative statins were significantly associated with improved 1-year amputation-free survival after lower extremity revascularization. Statin usage among patients with the diagnosis of claudication was more effective compared to patients with rest pain and ulceration/gangrene. Further focused evaluation of preoperative statins and the severity of peripheral vascular disease is warranted to assess the possible benefits of this pharmacotherapy on amputation-free survival.

3:15 pm – 4:00 pm COFFEE BREAK IN EXHIBIT HALL & ePOSTER VIEWING
(Encore 1-3)
5. Observations of Chronic Cerebrospinal Venous Insufficiency (CCSVI) in Multiple Sclerosis Patients Using a Multimodality Imaging Protocol

Richard F. Neville, MD¹, Carlo Tornatore, MD², James Laredo, PhD¹, Byung-Boong Lee, MD, PhD¹, Anton N. Sidawy, MD¹

¹Division of Vascular Surgery George Washington University, Washington, DC, ²Division of Neurology Georgetown University, Washington, DC

OBJECTIVE: Chronic cerebrospinal venous insufficiency (CCSVI) has been implicated in the etiology of multiple sclerosis (MS) with truncular venous malformations leading to stenosis of the jugular (IJV) and azygous veins resulting in insufficient drainage of the cerebrospinal venous circulation. Consistent with this theory is an increased mean transit time in MRI perfusion studies and histology showing hemosiderin deposits and pericapillary fibrin cuffs. This study prospectively evaluated patients with MS for the presence of CCSVI using Duplex ultrasound (US), venography, and intravascular ultrasound (IVUS).

METHODS: This prospective analysis was performed under IRB approval (IRB# 2010–186, August 2010). 100 consecutive patients with MS were screened by US using parameters of flow direction (reflux), B mode abnormalities (stenosis, webs, septum), obstructed flow, and decreased venous area below 0.4 cm² (no widening in the supine position). CCSVI was positive if two or more of these criteria were found with those patients undergoing venography with IVUS. Venous angioplasty was performed in patients with IJV or azygous stenosis by venography confirmed by IVUS. Balloon size was guided by IVUS measurements using low pressure balloons and prolonged inflation times. Post treatment venography and IVUS were performed in all treated patients. No stents were deployed.

RESULTS: US findings were positive for CCSVI in 57% of patients screened. The most common finding was abnormal flow direction with unilateral reflux in 52% and bilateral reflux in 43%; right IJV in 57% (reflux time 0.55–1.70 seconds) and left IJV in 62% (reflux time 0.68–2.25 seconds). Venograms were performed in 48 patients with abnormalities in 35 (73%); right IJV stenosis (29%), left IJV stenosis (33%), and azygous stenosis (10%). IVUS imaging confirmed sclerotic, hyperplastic areas of stenosis, but also identified venographic “pseudostenosis”
of the proximal IJV valve in various states of closure. In 32 patients (67%) angioplasty was performed; right IJV (9, 28%), left IJV (13, 41%) and the azygous vein (4, 12.5%). Venography and IVUS were performed post-angioplasty.

CONCLUSIONS: This study describes initial observations of imaging the cervical venous circulation in patients with MS. There were a substantial number of patients with venous abnormalities; however there was no comparative normal group. IVUS was critical in differentiating true abnormalities from venous valvular phenomenon which may prove essential in guiding intervention if a causal relationship is proven.
4:13 pm – 4:26 pm 6. Prediction of Graft Patency and Mortality After Distal Revascularization and Interval Ligation for Hemodialysis Access Related Hand Ischemia

Salvatore T. Scali, MD, Catherine K. Chang, MD, Daniel Raghinaru, PhD, Mike Daniels, PhD, Adam W. Beck, MD, Robert J. Feezor, MD, Peter R. Nelson, MD, Scott A. Berceli, MD, PhD, Thomas S. Huber, MD, PhD

University of Florida, Gainesville, FL

OBJECTIVES: The goals for management of access related hand ischemia (ARHI) are to reverse symptoms and salvage the access. Many procedures have been described, but the optimal treatment remains unresolved. In an effort to guide clinical decision making, this study was undertaken to document our outcomes for distal revascularization and interval ligation (DRIL) and identify predictors of bypass patency and patient mortality.

METHODS: A retrospective review was performed of all patients who underwent DRIL (1997–2010). Bypass patency and mortality were determined using life-tables and predictors determined using univariate and multivariate analyses.

Table. Univariate Predictors of Failure for DRIL Primary Patency

<table>
<thead>
<tr>
<th>Co-variate</th>
<th>Hazard Ratio</th>
<th>95% C.I.</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous upper arm access</td>
<td>1.0</td>
<td>0.8-1.5</td>
<td>0.03</td>
</tr>
<tr>
<td>Symptomatic upper arm</td>
<td>4.5</td>
<td>1.0-23.3</td>
<td>0.04</td>
</tr>
<tr>
<td>3 prior access procedures</td>
<td>3.3</td>
<td>1.0-10.3</td>
<td>0.04</td>
</tr>
<tr>
<td>Other access configuration</td>
<td>3.2</td>
<td>1.2-8.5</td>
<td>0.02</td>
</tr>
<tr>
<td>2 prior access procedures</td>
<td>2.9</td>
<td>1.0-8.5</td>
<td>0.06</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.4</td>
<td>0.1-1.0</td>
<td>0.06</td>
</tr>
<tr>
<td>Statin</td>
<td>0.2</td>
<td>0.1-0.8</td>
<td>0.02</td>
</tr>
<tr>
<td>Brachiocephalic access</td>
<td>0.2</td>
<td>0.01-0.8</td>
<td>0.02</td>
</tr>
</tbody>
</table>

RESULTS: 132 DRILs were performed in 126 patients (female-59%, diabetes-69%, age 57 ± 12 yrs [mean ± SD]) following brachial artery-based access with a 27% (19% wound) morbidity and a 2% 30-day mortality. Mean follow-up is 15 months. The wrist/brachial and digital/brachial indices increased 0.31 ± 0.25 and 0.25 ± 0.29, respectively. Symptoms resolved in 82% of patients and 85% were able to continue using their access. Primary and primary-assisted patency was 77%, 79% and 68%, 70% at 1 and 5 years. Univariate predictors of patency...
failure were cryo-preserved conduit, pre-operative ASA +coumadin use, a non-brachial basilic/cephalic access configuration, and ≥2 prior access attempts. Pre-operative statin therapy, saphenous vein conduit, and brachiocephalic access were predictors of improved bypass patency (Table). Mortality was 28% and 79% at 1 and 5 years, respectively. Multivariate predictors of mortality were composite conduit, complication from DRIL, and an indication of grade 3 ischemia.

CONCLUSIONS: DRIL effectively improves distal perfusion and reverses the symptoms of ARHI while salvaging the access. However, given the high mortality of this patient population, pre-operative risk stratification is critical for optimal utilization of this remedial strategy.
OBJECTIVES: Endovascular stent grafts are utilized in the rescue of failing AV access. Reports claim the superiority of stent grafts and recommended these as a first line treatment. We have observed a rise in the number of complications related to stent grafts in our patients. The following study was undertaken to assess the severity of these complications and their effect on access site maintenance.

METHODS: We reviewed all patients who had endovascular stent grafts placed for treatment of failing dialysis access over the last 44 months. A series of 38 consecutively placed stent grafts was reviewed for stent migration, fracture, erosion, hemorrhage and rupture at the site of the stent grafts. Hospital charts were reviewed to assess for indications, hemodynamic stability, transfusion requirement, and outcome.

RESULTS: Of 38 stent grafts placed, 9 were for pseudoaneurysm (PS), 20 for stenosis (ST), and 9 for a combination (PS/ST). The average length of follow-up was 218.6 days. Primary patency was 49% with an assisted primary patency of 76%. Eleven patients (28.9%) presented with complications (Table 1) related to migration, fracture, erosion, or rupture. Six were in the PS, three in the PS/ST and two in the ST treatment groups. In all cases migration or fracture of the stent graft lead to recurrent pseudoaneurysm formation or erosion. Rupture occurred after a herald bleed in 4 cases. Once complication occurred 10 of the 11 access sites had to be abandoned.

Table 1

<table>
<thead>
<tr>
<th>Presentation and outcomes of stent graft complications</th>
<th># of pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presented with significant bleeding episode</td>
<td>6</td>
</tr>
<tr>
<td>Required emergent/urgent operation</td>
<td>6</td>
</tr>
<tr>
<td>Attempted access site salvage</td>
<td>6</td>
</tr>
<tr>
<td>Herald Bleed (At least 72 hrs prior to presentation)</td>
<td>4</td>
</tr>
<tr>
<td>Significant hemodynamic instability (SBP <90)</td>
<td>4</td>
</tr>
<tr>
<td>Required blood transfusion (>1 unit PRBC)</td>
<td>3</td>
</tr>
<tr>
<td>Erosion without bleed</td>
<td>2</td>
</tr>
<tr>
<td>Cardiopulmonary Arrest</td>
<td>1</td>
</tr>
<tr>
<td>Mortality</td>
<td>1</td>
</tr>
</tbody>
</table>
CONCLUSIONS: Significant life threatening complication can arise when fracture and migration of the stent grafts used for treating AV access occur. Herald bleed with a previously placed stent graft may be a harbinger of future rupture. Complications appear less likely when stent grafts are used to treat stenosis however when complications occur access site salvage is rare. Surgical revision in the case of pseudoaneurysm should be considered for access preservation.
OBJECTIVES: The natural history of patients with Metabolic Syndrome (MetS) undergoing arteriovenous fistula placement is unknown. MetS has previously been found as a risk factor for poor outcomes for vascular surgery patients undergoing other interventions. The aim of this study is to describe the outcomes of MetS patients undergoing primary arteriovenous fistula placement.

METHODS: The medical records of all patients undergoing arteriovenous fistula placement between 2004 and 2009 at the VA Connecticut Healthcare system were reviewed (n = 122). Survival, primary patency, and secondary patency were evaluated using Gehan-Breslow test for survival. MetS was defined as the presence of three or more of the following: blood pressure ≥ 130 mmHg/90 mmHg; triglycerides ≥ 150 mg/dl; high-density lipoproteins (HDL) ≥ 50 mg/dl for women and ≥ 40 mg/dl for men; Body Mass Index (BMI) ≥ 30 kg/m2; fasting blood glucose ≥ 110 mg/dl.

RESULTS: One hundred and twenty-two patients underwent primary arteriovenous fistula placement. Seventy-five (61%) of the patients were identified to have MetS. The distribution of MetS factors among all patients were: 120 (98%) were hypertensive; 70 (57%) patients were diabetic; 51 (42%) patients had elevated triglycerides; 75 (61%) of patients had decreased HDL; 46 (38%) of patients had an elevated BMI. 55 (45%) of patients were currently receiving hemodialysis. The mean age of patients was 65 years. The mean length of follow-up was 2.9 years. The forearm was site of fistula placement in 76 (62%) of patients; no difference existed between groups (39% for MetS, 36% for No MetS, p = 0.78). The median time to primary failure was 0.57 years for all patients (0.76 years [No MetS], 0.47 years [MetS]; p = 0.11). Secondary patency was 50% at 1.28 years for all patients (1.72 years [No MetS], 0.72 years [MetS]; p = 0.01). Median survival duration for all patients was 4.7 years (5.2 years [No MetS], 4.5 years [MetS]; p = 0.03).

CONCLUSIONS: MetS is prevalent among patients undergoing arteriovenous fistula placement. Patients with MetS have equivalent primary patency rates, however their survival and cumulative patency rates are significantly lower compared to those patients without MetS. MetS should be considered as a significant risk factor for patients undergoing arteriovenous fistula placement.

* Peter B. Samuels Finalist.
Embolization During Pharmacomechanical Thrombectomy of Iliofemoral DVT: Is Routine Preoperative IVC Filter Placement Warranted?

Ross Ratner, MD, Kenneth Goldstein, MD, Luis R. Davila-Santini, MD
Montefiore Medical Center, Bronx, NY

OBJECTIVES: At our institution, pharmacomechanical thrombectomy (PMT) for acute iliofemoral (IF) DVT has become standard. We reviewed our experience with PMT of IF DVT and thromboembolic events to determine if a change in practice towards routine preoperative IVC filter (IVCF) placement is warranted.

METHODS: Using a prospectively maintained database, we identified all patients who underwent PMT for acute IF DVT between June 2008 and August 2011. All procedures were performed at our institution, with the Trellis® (Covidien, Dublin, Ireland/ Massachusetts, USA) device. IF DVT was diagnosed with venous duplex. Patients were placed prone and percutaneous popliteal vein access achieved. Our initial patient cohort did not undergo IVCF placement. Observation of thromboembolic events caused some patients to receive preoperative IVCF. Completion venogram was performed of the IVC to evaluate for thrombus within the IVCF. tPA was used as the pharmacologic agent. A 7 FR multipurpose catheter was used to remove thrombus. Angioplasty/stenting of iliac, femoral or IVC was performed selectively. Demographic data, etiology of thrombus, comorbidities and length of stay were recorded. Study endpoints included pulmonary embolus (PE), thrombus within IVCF and technical success. Technical success was defined as significant thrombus retrieval, adequate outflow through iliac veins and significant symptom improvement. All patients were systemically anticoagulated during and after the procedure.

RESULTS: A total of 23 legs were treated in 19 patients. Median age was 42 years (range 21–85). Median follow up was 17 months (range 2–37). Median length of stay was 5 days (range 2–9). Technical success was 100%, with significant symptom improvement in 18/19 (95%) patients. Four of 19 (21%) cases were bilateral. One of 19 (5%) patients required thrombolysis infusion overnight. Eight of 19 (42%) cases were related to either May Thurner’s syndrome or an underlying stenosis. One of 19 (5%) patients developed symptomatic PE, and 1/19 (5%) patients were incidentally found to have asymptomatic PE. Four of 19 (21%) patients had IVCF in place prior to the procedure. Nine of 19 (47%) patients had preoperative placement of a retrievable IVCF. Fifteen of 19 (79%) patients required angioplasty with or without stent placement. Seven of 19 (37%) patients had thrombus within the IVCF. Seventeen of 19 (89%) patients had patent iliac veins during follow up.

CONCLUSIONS: PMT of IF DVT improves venous outflow in patients with acute thrombus. The mechanical part of PMT may cause significant rates of embolization and we recommend considering IVCF placement preoperatively.
MP9. Impact of a Mandatory Venous Thromboembolism (VTE) Prevention Program on Rates of Prophylaxis and Hospital Acquired Pulmonary Embolism (PE)

Elizabeth S. Levin, MD, Reid Ravin, MD, Lisa Mainieri, MD, Eliot J. Lazar, MD, Robert A. Green, MD, Nicholas J. Morrissey, MD
Columbia University, New York, NY

OBJECTIVE: The use of a hospital wide electronic risk assessment tool was hypothesized to improve rates of appropriate venous thromboembolism (VTE) prophylaxis and decrease the rate of hospital acquired pulmonary embolism (PE).

METHODS: Beginning June 2010, all patients admitted to a 2300 bed academic hospital had VTE risk and prophylaxis assessed as part of their admission orders. A retrospective review identified 127 patients between January 2010 and March 2011 who developed hospital acquired PE. Positive events were identified via conclusive imaging with CT angiogram in all cases. Patient demographics, clinical details, diagnostic modalities, and hospital course data were collected. Descriptive statistics and chi-square tests were used to describe data and compare variables (alpha = p < 0.05). Tool implementation occurred midway through 2010. Additional detailed examination of in-hospital VTE prophylactic measures was performed to determine the effects of tool implementation on rates of appropriate DVT prophylaxis.

RESULTS: 127 PE occurred between January 2010 and March 2011, with a significant decrease noted after implementation of the VTE prevention tool (Table 1). Absolute risk reduction with tool use was 13%, with relative risk reduction of 39%. Based on review of all patients with documented PE, implementation of a mandatory VTE prevention program dramatically increased the proportion of patients who were on appropriate prophylaxis when they suffered an event.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>PE Rate per 1000 Patient Days</th>
<th>Proportion of PE Occurring with Appropriate ppx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre implementation of Tool</td>
<td>.33</td>
<td>.35</td>
</tr>
<tr>
<td>Post Implementation of Tool</td>
<td>.20</td>
<td>.77</td>
</tr>
<tr>
<td>P Value</td>
<td><.0001</td>
<td><.0001</td>
</tr>
</tbody>
</table>

CONCLUSIONS: Implementation of an electronic tool that addressed the VTE risk and provided an appropriate order set for all patients on admission significantly decreased the occurrence of hospital acquired PE and improved the rate of patients on appropriate prophylactic therapy for VTE. Future efforts are directed at the use of electronic order and alert systems to assure the level of appropriate prophylaxis approaches 100% and allows real time adjustment of prophylactic therapy to optimize patient care.
MP10. Eliminating Redundancy in the Pre-Operative Vascular Surgical Patient Workup: Computed Tomography Angiography for Greater Saphenous Vein Mapping as an Alternative to Traditional Ultrasonography

William F. Johnston, MD, Damien J. Lapar, MD, Kenneth J. Cherry, MD, John A. Kern, MD, Margaret C. Tracci, MD, Gorav Ailawadi, MD, Gilbert R. Upchurch, Jr., MD
University of Virginia, Charlottesville, VA

OBJECTIVES: Autologous greater saphenous vein (GSV) graft is frequently used as a conduit during infrainguinal arterial bypass. Pre-operative vein mapping is used to define GSV anatomy, thereby decreasing operative time and reducing wound complications. The purpose of this study was to determine whether GSV mapping using computed tomography angiography (CTA) closely correlated with that of traditional duplex ultrasonography (US).

METHODS: From August 2009 through June 2011, 51 patients underwent CTA of the lower extremities primarily to determine arterial anatomy and US for pre-operative vein mapping. Most of the studies (84%) were performed within one month of each other. GSV diameters measured on CTA [both antero-posterior (AP) and lateral] and US were evaluated at levels of the proximal thigh, mid thigh, knee, mid calf, and ankle. The relationship between CTA and US measurements were compared at each anatomic level using linear regression. Cost savings were calculated to include technical and professional fees.

RESULTS: Average patient age was 61.6 years old with the majority of patients male (70.6%). GSV diameter sequentially decreased from the proximal thigh to the mid calf and then increased to the ankle as measured by CTA and US (both p < 0.005). Overall, a high degree of correlation existed between CTA and US GSV diameters. The strongest degree of correlation occurred in measurements at the proximal thigh (CTA-lateral vs. US: R = 0.92; CTA-AP vs. US: R = 0.93), followed by the mid thigh (CTA-lateral vs. US: R = 0.87; CTA-AP vs. US: R = 0.86), mid calf (CTA-lateral vs. US: R = 0.80; CTA-AP vs. US: R = 0.78), knee (CTA-lateral vs. US: R = 0.80; CTA-AP vs. US: R = 0.76), and ankle (CTA-lateral vs. US: R = 0.75; CTA-AP vs. US: R = 0.74). All GSV measurements as measured by CTA and US were statistically equivalent (p < 0.001 for all correlation coefficients). By eliminating US for the study patients, the potential cost savings at our hospital over the study period was $49,316.

CONCLUSIONS: Indirect venography by CTA correlates well to US for GSV mapping in the lower extremity and provides significant cost savings. CTA allows AP and lateral evaluation of the GSV throughout its anatomic course. As CTA is often performed prior to lower extremity arterial bypass, these results suggest that the use of indirect venography from the preoperative CTA should be considered an acceptable alternative to the use of ultrasonography.
OBJECTIVES: The use of intravascular ultrasound to place bedside IVC filters has the potential to increase patient safety due to decreased need for patient transport and its use in patients with open abdomen. IVUS has been criticized for an increased rate of malpositioned IVC filters. The purpose of this study was to evaluate the utility of correlating preprocedure CT scan measurements with IVUS derived measurements of anatomic structures for assistance in placement of bedside IVUS-guided inferior vena cava (IVC) filters.

METHODS: A retrospective review of prospectively collected data was performed on all patients receiving bedside IVUS guided filters from July 1, 2010 and August 31, 2011. Measurements of the inferior vena cava length from the atrial-IVC junction to the mid-portion of the crossing right renal artery, the lowest renal vein and iliac vein confluence were obtained prior to IVC filter placement by evaluation of existing CT scan data and intra-operatively by IVUS pullback. Regression analysis (significant for P < 0.05) was used to determine if there was a correlation between measurements obtained by IVUS as compared to those obtained using preprocedure CT imaging.

RESULTS: Over this 13 month period of time there were 27 bedside IVUS filters placed. There were 22 patients who had both IVUS and CT scans available to perform the analysis. All IVUS guided filters were placed using the single puncture technique using the Cook Celect Filter system. There was a correlation between IVUS and CT derived measurements of the right atrium—right renal artery distance (P < 0.001), right atrium—lowest renal vein distance (P < 0.001) and right atrium—iliac confluence distance (P < 0.001). There were no complications or malpositions of IVC filters using this protocol.

CONCLUSIONS: These data suggest that IVUS pullback measurements from the right atrium in combination with preprocedure CT derived measurements of the distance from the right atrium to the lowest renal vein and right atrium to the iliac vein confluence provide an accurate roadmap for the placement of bedside IVC filters under IVUS guidance. We suggest this easily employed technique be more fully utilized to help decrease the incidence of malplaced filters using IVUS guidance alone.
MP12. Early Experience with a Novel “Hybrid” Graft Used for Hemodialysis Access

Javier E. Anaya-Ayala, MD, Matthew K. Adams, BS, Charudatta S. Bavare, MD, Jean Bismuth, MD, Alan B. Lumsden, MD, Eric K. Peden, MD, Mark G. Davies, MD, PhD, MBA, Joseph J. Naoum, MD
Methodist DeBakey Heart & Vascular Center, Houston, TX

BACKGROUND: Achieving functional dialysis access in patients with few or hard to access open deep veins is an ongoing challenge in the present day. The development of new technologies may provide an alternative to conventional approaches and maximize the use of the extremity’s venous real-estate while reducing the operative insult to these generally fragile patients.

METHODS: We describe our initial experience with the hybrid vascular graft (W.L. Gore and Associates, Flagstaff, Ariz.) in 23 patients. The hybrid graft allows for a stented and sutureless distal anastomosis which can be performed using endovascular access. Selection criteria included: no acceptable peripheral alternative access site, previous graft anastomosis or a stent in the venous target at the level of the axilla, failed brachial-basilic upper arm transposition arteriovenous fistula or a target vein <0.3 cm within the axilla. Patient demographics and early patency were evaluated.

RESULTS: Technical success was accomplished in all 23 cases (100%), 7 required a Viabahn (W. L. Gore and Associates, Flagstaff, Ariz.) stent-graft extension and two additional patients percutaneous angioplasty (PTA) to improve venous outflow at the axillary and/or subclavian veins at the time of surgery. Nineteen patients are currently using the hybrid graft for hemodialysis while two recently had the procedure and are not yet using their grafts. 2 patients developed dialysis associated steal syndrome (DASS) requiring plication of the inflow graft segment and one of them also required stenting of the brachial artery to improve inflow. During the follow up period two patients died of comorbidities nonrelated to the access procedure while having a functioning graft.

CONCLUSION: This early experience shows that the hybrid graft concept appears to be a safe and technically effective alternative for patients with a disadvantaged anatomy in whom dialysis access is needed. Long-term data will be required to validate it as a preferential option in patients with limited venous real-estate.
MP13. Outcome of Open Repair of Arteriovenous Fistula Aneurysms
Mital S. Patel, MD, Huynh T. Huynh, MD,
Erik K. Peden, MD, Mark G. Davies, MD, PhD,
Joseph J. Naoum, MD
The Methodist Hospital, Houston, TX

OBJECTIVES: Arteriovenous fistula (AVF) aneurysms (AVFA) can lead to skin erosion, bleeding, difficult access while on hemodialysis, and poor cosmetic appearance. We reviewed our experience in treating patients with aneurysmal dilatation of their arteriovenous access and examined the prevalence of significant venous outflow stenoses.

METHODS: We reviewed clinical data of 48 patients (37 men; overall mean age 55 years, range 28–85 years) with an AVFA who underwent treatment during a 30 month period. There were 32 brachial cephalic upper arm, 7 radial-cephalic forearm and 9 brachial-basilic upper arm transposition AVFs. Ninety-six percent of patients suffered from hypertension and 50% had diabetes. All patients underwent a fistulogram prior to open repair. Relevant clinical variables, imaging studies and treatment outcomes were analyzed.

RESULTS: Open repair with aneurysmorrhaphy was performed in either one or two stages in 63% and 37% of patients, respectively. No interposition grafts were used. Only 11 patients (23%) required placement of a tunneled dialysis catheter (TDC) as a bridge until the surgically repaired AVF was ready for use again. Thirty three percent of patients undergoing a one-stage aneurysmorrhaphy required placement of a tunneled dialysis catheter compared to only 6% of patients undergoing a two-stage procedure. Eighty one percent of the AVFs had at least one significant venous outflow obstruction, and 43% of these patients had at least two outflow stenoses that required treatment. A stenosis of the arteriovenous fistula was the most common lesion in 65% of patients followed by a stenosis of the axillary or subclavian vein outflow in 54%, innominate vein stenosis in 17%, and SVC in 2% of patients. All stenoses were treated with percutaneous balloon angioplasty. All AVFA were salvaged and patients were able to maintain functional use of their access.

CONCLUSIONS: There is a very high association of venous outflow stenoses and AVFA. Comprehensive therapy should encompass treatment of any venous outflow stenoses prior to open AVFA repair. A two-stage repair may decrease TDC use in patients with multiple aneurysms.
INTRODUCTION: End Stage Renal Disease (ESRD) patients ideally should have Arterio-Venous Fistula (AVF) formation 3–6 months prior to commencing Haemodialysis (HD). However this is not always possible with contemporary strained healthcare resources.

OBJECTIVES: We aim to compare autologous Proximal AVF (PAVF) formation with Distal AVF (DAVF) in patients already on HD. Primary endpoints are 4-year primary and post-intervention patency. Secondary endpoints are freedom from major adverse clinical events (MACE), and Quality Time Spent without Symptoms of disease or Toxicity of Treatment (Q-TWIST).

DESIGN: Retrospective cohort study using data from a prospectively-maintained Vascular Database.

METHODS: From January 2003 to June 2009, 179 patients with ESRD on HD had 200 procedures for AVF formation (37 DAVF vs. 163 PAVF), in arms in which no previous fistula had been formed. No synthetic graft was used.

RESULTS: 4-year primary functional patency significantly improved with PAVF (68.9% ± SD8.82%) compared to DAVF (7.25% ± SD4.94%) (p < 0.0001).

4-year secondary functional patency significantly improved with PAVF (76.02% ± SD9.61%) versus DAVF (7.45% ± SD5.07%, p < 0.0001).

5-year freedom from MACE was 85% with PAVF compared to 40% with DAVF (P < .005).

5-year QTWiST significantly improved with PAVF compared to DAVF (P < 0.005).

CONCLUSION: PAVF bestows long-term functional access with fewer complications compared to DAVF and should be preferentially offered to patients already on HD.
5:30 pm – 6:30 pm WELCOME RECEPTION in Exhibit Hall
(Encore 1-3)
* The Welcome Reception is not part of the SCVS scientific program and are not eligible for CME credit through the SCVS joint sponsor.

5:30 pm – 8:30 pm INCOMING FELLOWS PROGRAM—PART I
(Chopin 4)
*Incoming Fellows Program is not part of the SCVS scientific program and are not eligible for CME credit through the SCVS joint sponsor.

5:30 pm – 6:00 pm Reception
6:00 pm – 6:15 pm Welcome
Joseph Ricotta, MD and Caron Rockman, MD

6:15 pm – 6:25 pm Icebreaker

6:25 pm – 6:45 pm Running an Efficient Service
Mark D. Fleming, MD

6:45 pm – 6:55 pm Question and Answers

6:55 pm – 7:15 pm Balancing you Time
Nabeel Rana, MD

7:15 pm – 7:35 pm Question and Answers

7:35 pm – 7:45 pm How to Utilize your Industry Reps
Gautam Shrikhande, MD

7:45 pm – 7:55 pm Question and Answers

7:55 pm – 8:30 pm 2nd year Fellows Panel
Eric Hager, MD; Sean Hislop, MD; Venita Chandra, MD
Thursday, March 15

7:00 am – 8:00 am SPECIAL INTEREST GROUP (SIG)—BREAKFAST SESSION (Chopin 2)
Challenging Cases: Peripheral & Other
Moderated by: Alan M. Dietzek, MD
Kim J. Hodgson, MD

SPEAKERS:
Matthew L. White, MD
University of Arizona, Tucson, AZ
Shipra Arya, MD
University of Michigan, Ann Arbor, MI
Michael Martinez, MD
Scott & White Hospital Clinic, Temple, TX
Tapash Palit, MD
Louisiana State University, Marrero, LA
David Dexter, MD
NYU Medical Center, New York, NY
Mark Morasch, MD
Northwestern Memorial Hospital, Chicago, IL

7:00 am – 8:00 am SPECIAL INTEREST GROUP (SIG)—BREAKFAST SESSION (Chopin 3)
Challenging Cases: Abdominal Aortic
Moderated by: Fred A. Weaver, MD
R. Clement Darling, MD

SPEAKERS:
Cassidy Duran, MD
The Methodist DeBakey Heart & Vascular Center, Houston, TX
Todd Cumbie, MD
Baylor University Medical Center, Dallas, TX
Thomas Reifsnnyder, MD
Johns Hopkins University, Baltimore, MD
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

Emilia Krol, MD
Danbury Hospital, Danbury, CT
Joseph S. Giglia, MD
University of Cincinnati, Cincinnati, OH
Matthew L. White, MD
University of Arizona, Tucson, AZ

7:00 am – 8:00 am CONTINENTAL BREAKFAST WITH INDUSTRY
(Encore 1-3)

7:00 am – 11:30 am EXHIBITION HALL HOURS
(continuous beverage service)
(Encore 1-3)

7:00 am – 12:30 pm REGISTRATION DESK
(Promenade)

7:00 am – 12:00 pm SPEAKER READY ROOM
(Schubert)
8:15 am – 9:30 am SCIENTIFIC SESSION 3—
CAROTID DISEASE
(Encore 4-8)

Moderated by: Gilbert R. Upchurch, MD
Fred A. Weaver, MD

8:15 am – 8:28 am 9. Prospective Neurocognitive Evaluation of Patients Undergoing Carotid Interventions
Elizabeth Hitchner, MA1, Kathleen Gillis, RNP2, Lixian Sun, MS2, Allyson Rosen, PhD2, Wei Zhou, MD2
1Palo Alto VA Medical Center, Palo Alto, CA, 2Stanford University, Stanford, CA

OBJECTIVE: During carotid interventions there is a risk of distal cerebral embolization. Here we prospectively investigate whether subclinical microembolization seen on post-operative MRI leads to cognitive deficits in a cohort of patients undergoing either carotid endarterectomy (CEA) or carotid artery stenting (CAS).

METHODS: Patients undergoing carotid interventions and eligible for MRI scanning were recruited to participate. Among 247 patients who received both preoperative and postoperative MRI evaluations, a total of 51 patients also completed neuropsychological testing prior to the procedure and at one month following. Demographic data and MRI with diffusion weighted sequence (DWI) were collected for all patients. MRI with DWI was performed preoperatively and within 48 hours after the procedure. Cognitive function was evaluated using the Rey Auditory Verbal Learning Test (RAVLT) to evaluate memory and the Mini-Mental State Examination (MMSE) to screen for general cognitive impairment.

RESULTS: All 51 patients (16 CAS and 35 CEA) were male with a mean age of 71 years, ranging 54 to 89 years. Among them, 26 patients (51%) were symptomatic including 11 patients who had prior stroke and 15 patients who had prior TIA. The majority of the patients had significant medical comorbidities including hypertension (92%), diabetes (31.3%), coronary artery disease (47%), and COPD (15.7%). Thirteen patients (25%) had prior CEA and 7 had contralateral carotid occlusion (13.7%).

Memory decline evident on RAVLT was identified in 21 patients including 8 CAS patients and 13 CEA patients. There was no significant difference in baseline cognitive function or memory change between CEA and CAS cohort. Eleven patients had evidence of procedure-related microemboli. Multivariate regression analysis showed that procedure-related microembolization was associated with memory decline (P = 0.016) as evident by change in RAVLT. Prior history of neurologic symptom was significantly associated with poor baseline cognitive function (MMSE) (P = 0.03) and overall cognitive deterioration (change in MMSE) (P = 0.026) as determined by Wilcoxon Rank Sum test and linear regression analysis respectively.
CONCLUSIONS: Although both CEA and CAS are effective in stroke prevention with minimal neurologic complication, neurocognitive effects remain uncertain. Procedure-associated microembolization and pre-existing neurologic symptoms are associated with poor baseline cognitive function and memory decline following the procedures. Further comprehensive cognitive evaluation to determine the benefit of carotid interventions is warranted.
8:28 am – 8:41 am 10. The Prevalence of Carotid Artery Stenosis Varies Significantly by Race

Caron Rockman, MD, Thomas Maldonado, MD, Glenn R. Jacobowitz, MD, Jeffrey S. Berger, MD, Mark A. Adelman, MD, Thomas S. Riles, MD
New York University Medical Center, New York, NY

OBJECTIVES: Certain races are known to be at increased risk for stroke, and the prevalence of carotid artery stenosis (CAS) is thought to vary by race. The goal of this report was to study the prevalence of CAS by race via analysis of a large population of patients who underwent vascular screening examinations.

METHODS: Of 3,494,778 patients who underwent voluntary vascular screening, 3.7% did not self-identify a race and were excluded. Analysis of collected data was performed by gender and by age. CAS was defined to be present when >50% by Duplex criteria.

RESULTS: The 3,561,679 patients consisted of Caucasians (C, n = 3,166,432, 88.9%), African-Americans (AA, n = 111,456, 3.1%), Hispanics (H, n = 87,615, 2.5%), Asians (A, n = 71,198, 2.0%), and Native Americans (NA, n = 102,162, 2.9%). Controlling for gender and age, there was marked variation in the prevalence of CAS (p < 0.001). In males of all ages, NA’s had the highest rate of CAS, and C’s had the second highest rate. Male AA patients had either the lowest rate, or the second lowest rate in all age categories studied. In female patients of all ages, NA’s again had the highest rate of CAS, with C’s having the second highest rate. However, in contrast to males, A females uniformly had the lowest prevalence of CAS. Multivariate analysis including atherosclerotic and demographic factors confirmed race as an independent predictive variable.

CONCLUSIONS: The prevalence of CAS varies significantly by race. NA and C patients have the highest rates of CAS, while AA males and A females appear to have the lowest rates. This information adds evidence to the hypothesis that the increased stroke rate in AA patients is likely not related to extracranial cerebrovascular disease. Furthermore, this is an oval report of an extremely high rate of CAS in NA patients.

<table>
<thead>
<tr>
<th>Table: Relationship of Carotid Artery Stenosis and Race</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian</td>
</tr>
<tr>
<td>Males 51–60</td>
</tr>
<tr>
<td>Males 61–70</td>
</tr>
<tr>
<td>Males 71–80</td>
</tr>
<tr>
<td>Males > 81</td>
</tr>
<tr>
<td>Females 51–60</td>
</tr>
<tr>
<td>Females 61–70</td>
</tr>
<tr>
<td>Females 71–80</td>
</tr>
<tr>
<td>Females > 81</td>
</tr>
</tbody>
</table>
OBJECTIVES: CAS has been shown to have higher perioperative stroke and death (PSD) rates than CEA in symptomatic, but less convincingly in asymptomatic patients. Limited CAS experience has been blamed for worse outcomes. We sought to compare the PSD rate of CAS versus CEA in an administrative database to determine if CAS usage variation is linked to PSD in asymptomatic patients at the hospital level.

METHODS: Using California hospital discharge data from 2005 through 2009, we identified CAS and CEA procedures and hospitals where they were performed. Preoperative symptom status was determined using ICD-9 and administrative codes. Propensity scores based on comorbidities and demographics were generated to identify a matched and balanced cohort of CEA and CAS patients. We used logistic regression to identify risk factors for PSD, calculated CAS rates as a proportion of all carotid revascularization (CR) procedures for each hospital, stratified hospitals into groups based on the proportion of CR that was CAS, and performed non-parametric test for trend to compare PSD rates.

RESULTS: From 2005 to 2009, 3,549 CAS and 26,792 CEA were identified that treated asymptomatic patients in 270 hospitals. PSD occurred in 133 CAS and 446 CEA patients, yielding unadjusted PSD rates of 3.7% and 1.7%, respectively (p < 0.001). Compared with CAS patients, CEA patients were more likely to be older than 70 (67% vs. 64%, p < 0.001), but less likely to have 3 or more comorbidities (37% vs. 40%, p < 0.001). After propensity score matching and eliminating hospitals with fewer than 20 CR over 5 years, 18,297 patients in 169 hospitals were available for analysis. Logistic regression demonstrates CAS is significantly associated with increased PSD risk (OR 2.497, p < 0.001). Patients undergoing CR in hospitals that perform CAS more frequently, in terms of CAS as a proportion of CR, had higher PSD rates than patients in hospitals that performed CAS less (Figure).

CONCLUSIONS: CEA has a lower PSD rate compared to CAS in asymptomatic patients. PSD rates were elevated in hospitals with higher proportions of CAS as a proportion of CR, suggesting that increased use of CAS in a hospital is associated with worse patient outcomes.

* Peter B. Samuels Finalist.
Figure: Hospital PSD rates stratified by quintiles in terms of use of CAS as opposed to CEA

<table>
<thead>
<tr>
<th>Quintile</th>
<th>CAS/CR (Percent)</th>
<th>Number of hospitals</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A (No CAS)</td>
<td>0%</td>
<td>54</td>
</tr>
<tr>
<td>1 (Lowest)</td>
<td>2%</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>4%</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>9%</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>21%</td>
<td>23</td>
</tr>
<tr>
<td>5 (Highest)</td>
<td>48%</td>
<td>23</td>
</tr>
</tbody>
</table>

p=0.005 by non-parametric test for trend
MP15. Age Can Affect Incidence of DWI Detected Microembolic Lesions Following Carotid Intervention

Mohamed Zayed, MD, PhD; Elizabeth Hitchner, MA; Simin Gholibeikian, MD, PhD; Alyson Rosen, PhD; Barton Lane, MD, PhD; Wei Zhou, MD

1Stanford University, Stanford, CA, 2Palo Alto VA Medical Center, Palo Alto, CA,

OBJECTIVE: Diffusion weighted MRI (DWI) detected microembolic events following carotid endarterectomy (CEA) and/or carotid artery stenting (CAS) is a known phenomenon. We previously reported nearly a 40% chance of newly detected DWI microembolic events following CAS. Recent CREST trial results suggest that age is a predictor of poor outcomes following CAS. We thought to evaluate whether age is also a predictor of newly detected perioperative DWI detected microembolic events.

METHODS: From 7/2004 to 12/2010, a total of 294 patients (178 CEA and 116 CAS) underwent carotid artery interventions at a single academic institution, and also received pre- and post-operative DWI evaluations. Incidence of DWI detected microembolic events were evaluated for different age groups, and two-way ANOVA analysis with Bonferroni correction was performed.

RESULTS: Forty three (37.1%) CAS patients compared to 16 (8.9%) CEA patients had postoperative DWI lesions (p80 years old were more likely to develop postoperative DWI detected microemboli with CEA compared to CAS. In all other age groups, the incidence of microemboli was higher among patients who received CAS. Although no significant differences were observed in microemboli rates between CAS and CEA within each age group (Figure 1), two-way ANOVA analysis of the study population suggested that a patient’s age significantly affects the incidence of microemboli (P < 0.001).
CONCLUSION: Our study underscores that age is an important variable that affects the incidence of microembolic events following either CAS or CEA. Unlike other age groups, patients older than 80 years old are more likely to develop postoperative microemboli following CEA, but this difference is not statistically significant. These findings suggest that microembolic events, in addition to stroke, myocardial infarction, and death are important postoperative parameters to evaluate and may be affected by a patient’s age.
MP16. Plaque Vulnerability and Cerebral Embolization After Carotid Stenting

Andrew Unzeitig, MD, David E. Timaran, MD, Eric B. Rosero, MD, Adriana J. Higuera, MD, R. James Valentine, MD, Carlos H. Timaran, MD
University of Texas Southwestern Medical Center, Dallas, TX

OBJECTIVES: The large necrotic core and thin fibrous cap of vulnerable plaques render them prone to rupture and cerebral embolization. Whether vulnerable plaques represent unfavorable lesions for carotid artery stenting (CAS) is unknown. The purpose of this study was to assess the occurrence of cerebral embolization after CAS of vulnerable vs. nonvulnerable plaques identified with virtual histology intravascular ultrasound (VH-IVUS).

METHODS: During an 18-month period, 40 patients undergoing CAS were prospectively evaluated. All patients underwent VH-IVUS at the time of the intervention. Transcranial Doppler (TCD) monitoring during CAS and pre- and 24-hour postprocedural diffusion-weighted magnetic resonance imaging (DW-MRI) were used to assess cerebral embolization. Using VH-IVUS, lesions with large necrotic core (>10%) and thin fibrous cap were identified as vulnerable plaques. Univariate and nonparametric analyses were used to compare the degree of cerebral embolization between vulnerable and nonvulnerable plaques.

RESULTS: CAS was performed for 15 (38%) vulnerable and 25 (42%) nonvulnerable plaques. The median MES counts detected by TCD were 313 (interquartile range [IQR], 251–404) for vulnerable plaques and 239 (IQR, 160–378) for nonvulnerable plaques (P = .2). New acute cerebral emboli detected with DW-MRI occurred in 57% and 56% of patients undergoing CAS of vulnerable and nonvulnerable plaques, respectively (P = .9). The total and ipsilateral median number of DW-MRI lesions between groups were not statistically significantly different, i.e. 1 (IQR, 0–3) and 1 (IQR, 0–2) for vulnerable and nonvulnerable plaques, respectively (P = .8). One asymptomatic patient undergoing CAS of a vulnerable plaque sustained a minor stroke; the 30-day stroke-death rate in this series was 2.5%.

CONCLUSIONS: Cerebral embolization, as detected by TCD and DW-MRI, occurs with similar frequency after CAS of vulnerable and nonvulnerable plaques. Because acute brain injury occurs in more than half of patients undergoing CAS under filter embolic protection for both vulnerable and nonvulnerable plaques, further improvements to prevent distal embolization is necessary to optimize CAS safety.
OBJECTIVES: Carotid artery stenting (CAS) with distal protection has proven an effective alternative for high-risk patients with severe carotid stenosis. A major concern during CAS is that debris from the aortic arch may travel via either internal carotid artery (ICA) to the cerebrum. Contralateral microemboli are thought to be due to excessive manipulation of a diseased aorta leading to debris embolization via the contralateral ICA. We sought to determine other sources of contralateral microembolization during CAS.

METHODS: Consecutive patients receiving carotid interventions for carotid artery stenosis at a single institution were retrospectively reviewed. Only patients who received both pre- and post-operative MRI with diffusion-weighted sequences (DWI) were included in the study. Patients who had contralateral carotid artery occlusions were the primary focus. The presence of contralateral ICA occlusion, patient characteristics, and anatomic variability were compared.

RESULTS: From 2006–2011, 350 patients underwent carotid interventions. Among them, 247 had pre- and post-procedure MRI evaluations including 23 patients who had contralateral carotid artery occlusions. Fourteen CAS patients (12%) had known contralateral ICA occlusions and 3 patients (21%) demonstrated new contralateral microemboli. All were male, current smokers, and on antihypertensive medications.

One patient had a previous CVA and two patients had a history of atrial fibrillation. One patient developed hemodynamic instability requiring pressor support during the procedure. However, no patient developed symptoms during the procedure or follow-up period. Two patients had a Type II arch, but direct arch embolization to the contralateral hemisphere was unlikely due to contralateral ICA occlusion. All three patients also demonstrated new contralateral microemboli. MRI images showed that all patients had a patent Circle of Willis. Two had a very prominent posterior communicating artery, while one patient had a patent anterior communicating artery. Logically, the contralateral DWI lesions originated ipsilaterally and travelled through the intracranial communicating arteries to the contralateral hemisphere.
CONCLUSIONS: Contralateral cerebral embolization during CAS is not a rare occurrence. This series is the first to provide structural evidence of the intracranial primary collateral pathway as an important source of inter-hemispheric microembolization. Larger studies are needed to help predict those patients at greatest risk for contralateral ICA embolization.
MP18. Recurrent Stenosis Is Higher After Eversion Endarterectomy
Daniel Mortensen, BS², M. Ashraf Mansour, MD¹, Robert F. Cuff, MD², Christopher M. Chambers, MD, PhD¹, Jason D. Slaikeu, MD¹
¹Spectrum Health, Grand Rapids, MI, ²MSU, Grand Rapids, MI

BACKGROUND: Recurrent stenosis (RCS) after carotid endarterectomy (CEA) occurs in 5–10% of cases. Redo endarterectomy or carotid stenting (CAS) are indicated in symptomatic patients or those with high-grade restenosis.

PURPOSE: To review the incidence of RCS by color-flow duplex scan (CFDS), and compare the incidence after eversion and patch angioplasty CEA.

METHODS: Patients undergoing CEA were entered in a prospective database. CFDS was performed at 3, 6, 12, 24, 36, 48 months. More frequent intervals were done in select patients with abnormal results or symptoms. We excluded patients with insufficient follow-up. CFDS criteria for detecting restenosis were peak systolic of >250 cm/sec or end diastolic of >100 cm/sec. Charts were reviewed to determine what type of reintervention was performed, redo CEA or CAS.

RESULTS: In a 5-year period, we found 627 patients (268 women, 41%) who had CEA, 176 were evasions (28%). RCS was detected in 12 (6.8%), 8 in the first year, 3 in the second and 1 in the fourth. By comparison, 451 were CEA with patch angioplasty (72%) and 19 (4.2%) developed RCS: 8 in the first year, 7 in the second, 2 in the third and 2 in the fourth. In the evasion group, only 4 (2.2%) required CAS for symptomatic recurrence, and all 4 patients were women. There were 8 (1.8%) CAS in the patch group, 3 were women and 3 were symptomatic.

CONCLUSIONS: This study shows that the recurrence rate with eversion endarterectomy is slightly higher than after CEA with patch angioplasty. The rate of symptomatic recurrence or RCS requiring stenting is nearly identical in both groups.
OBJECTIVES: Urgent carotid endarterectomy (CEA performed within 2 weeks after the onset of acute neurological deficits) seems to yield better long-term results than if delayed or not performed.

We retrospectively analysed the results of all urgent CEAs performed in our institution since the establishment of an operative protocol with our Stroke Unit.

METHODS: From January 2002 to July 2011 all the patients coming to our ER with acute neurological symptoms underwent a diagnostic work-up consisting of: neurologic evaluation, head computed tomography (CT), and carotid duplex scanning. Assessment of National Institute of Stroke Scale (NIHSS) was performed at admission and discharge for neurologically stable patients.

88 patients with a carotid stenosis >50% and no contraindication to surgery (NIHSS >15 or hemorrhagic infarction at CT scan) underwent urgent CEA.

The mean age was 70.8 years (range 37–89 years) with 63 (71.6%) men and 25 (28.4%) women.

Patients were grouped according to presentation: Group1 single transient ischemic attack (TIA), Group2 minor and moderate stroke, Group3 unstable symptoms (crescendo TIA or stroke in evolution).

We considered the timing of surgery as emergent (CEA < 24h) or non emergent.

End points were NIHSS score modification, postoperative morbidity and mortality.

RESULTS: Urgent CEAs were performed at a median time of 50 hours (IQR 16–116 hours) from the onset of symptoms.

Median NIHSS was 4 (IQR 2–6,2) on admission and 2 (IQR 0,7–3,2) on discharge with a median improvement of 2 points (IQR 0–4).
There was a total of 11 (12.5%) neurologic complications: 0/16 for GROUP1, 6/55 (10.9%) for GROUP2 and 5/17 (29.4%) for GROUP3.

In patients with minor to moderate stroke a timing of intervention >24 h was significantly associated with a higher rate of complications (P < 0.4), while in patients with unstable symptoms we we found no relation between timing of surgery and clinical outcomes.

Total mortality was 4 (4.5%): 3 deaths due to neurologic complications and 1 death due to myocardial infarction.

CONCLUSIONS: Urgent CEA is a safe and effective therapeutic strategy for patients presenting with mild to moderate stable neurologic deficits, especially if performed in the very first hours of presentation. We need more accurate studies to identify that subset of patients presenting with unstable symptoms who may not benefit from early surgery.
MP20. Gray Scale Median Analysis Predicts Perioperative Outcome of Carotid Artery Stenting: Is There a Difference Between Primary Stenosis and Post-Carotid Endarterectomy Restenosis?

James Pavela, MD, Samuel N. Steerman, MD, Jonathan A. Higgins, MD, Jean M. Panneton, MD
EVMS, Norfolk, VA

OBJECTIVES: Gray scale median (GSM) analysis has been used to measure lipid content in carotid lesions. Previous studies have shown that a low GSM value is correlated with increased perioperative risk during carotid artery stenting (CAS). A comparative analysis of GSM values between patients with a primary stenosis (the “primary” group) and those with a post-carotid endarterectomy (CEA) atherosclerotic restenosis (the “post-CEA” group) was performed to determine if both groups are appropriate for GSM analysis.

METHODS: Retrospective data was collected and analyzed from all patients undergoing CAS from November 2005 to August 2010. Data collected were: demographics, atherosclerotic risk factors, high risk criteria, ultrasound imagery, perioperative outcomes, and long-term outcomes. Patients who had pre-operative images amenable to gray scale analysis were identified as a sub-population for investigation. GSM values were calculated with Adobe Photoshop (v.CS4, San Jose, CA, USA) in the manner previously described in the literature.

RESULTS: During the study period, 284 patients underwent 304 CAS procedures. The study population was comprised of 53 patients for whom GSM analysis was feasible. The study population was divided into one of the two groups mentioned above: the primary group (n = 40, 75%) or the post-CEA group (n = 13, 25%). The mean time from CEA to CAS reintervention for the post-CEA group was 7.3 years (range 0.5 to 15 years, \(\sigma = 4.7 \)). The two groups had the following characteristics:

<table>
<thead>
<tr>
<th></th>
<th>Primary (n = 40)</th>
<th>Post-CEA (n = 13)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age</td>
<td>72.2 (range 50 to 88, (\sigma = 9.5))</td>
<td>69.3 (range 55 to 86, (\sigma = 8.7))</td>
<td>0.31</td>
</tr>
<tr>
<td>Hypertensive</td>
<td>36 (90%)</td>
<td>9 (69%)</td>
<td>0.08</td>
</tr>
<tr>
<td>Coronary Artery Disease</td>
<td>16 (40%)</td>
<td>3 (23%)</td>
<td>0.33</td>
</tr>
<tr>
<td>CVA prior</td>
<td>13 (33%)</td>
<td>2 (15%)</td>
<td>0.31</td>
</tr>
<tr>
<td>Octogenarian</td>
<td>10 (25%)</td>
<td>2 (15%)</td>
<td>0.70</td>
</tr>
<tr>
<td>Mean GSM</td>
<td>43.8 (range 4 to 102, (\sigma = 23.6))</td>
<td>19.9 (range 0 to 55, (\sigma = 16.5))</td>
<td>0.0002</td>
</tr>
<tr>
<td>Perioperative Stroke</td>
<td>1 (2.5%)</td>
<td>0 (0%)</td>
<td>1.00</td>
</tr>
<tr>
<td>Perioperative Mortality</td>
<td>2 (5.0%)</td>
<td>0 (0%)</td>
<td>1.00</td>
</tr>
<tr>
<td>Combined Perioperative Complication</td>
<td>3 (7.5%)</td>
<td>0 (0%)</td>
<td>0.57</td>
</tr>
<tr>
<td>Mean Followup</td>
<td>280 days</td>
<td>412 days</td>
<td>0.20</td>
</tr>
<tr>
<td>Restenosis (>224 PSV)</td>
<td>4 (10%)</td>
<td>1 (7.7%)</td>
<td>1.00</td>
</tr>
<tr>
<td>>30 day Ipsilateral Stroke</td>
<td>1 (2.5%)</td>
<td>0 (0%)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The patients in each group were then further subdivided into low (<30) or high (≥30) GSM subsets. In the primary group, there were 10 patients (25%) in the low GSM subset and all perioperative complications occurred within this subset (n = 3, 30%). This differed significantly from the patients in the high GSM subset (p = .0289). For the post-CEA group, there were 10 patients (77%) within the low GSM subset and there were no complications (n = 0, 0%). There was no difference between the low GSM subset and high GSM subset in the post-CEA group (0 vs. 0 complications).

CONCLUSION: This study confirms that a low GSM value is associated with increased perioperative risk for primary stenosis but suggests that GSM analysis is less predictive for patients with post-CEA restenosis.
MP21. Primary Extracranial Vertebral Artery Aneurysms: A Case Series
Sachin V. Phade, MD1, Mark D. Morasch, MD2, Justin Hurie, MD2, Peter A. Naughton, MD3, Manuel Garcia-Toca, MD1, Ramon Berguer, MD2
1Northwestern University, Chicago, IL, 2University of Michigan, Ann Arbor, MI, 3St. James Hospital, Dublin, Ireland

OBJECTIVE: Extracranial vertebral artery aneurysms are uncommon and are usually associated with trauma or dissection. Primary cervical vertebral aneurysms are even rarer and are not well described. The presentation and natural history are unknown and operative management can be difficult. Accessing aneurysms at the skull base can be taxing, and since the frail arteries are often afflicted with connective tissue abnormalities, direct repair can be particularly challenging. We describe the presentation and surgical management of patients with primary extracranial vertebral artery aneurysms.

METHODS: A retrospective multi-institutional review of patients with primary aneurysms within the extracranial vertebral artery.

RESULTS: Between January 1, 2000, and December 3, 2010, 7 patients, age 12–56, were noted to have 9 primary extracranial vertebral artery aneurysms. All had underlying connective tissue or other hereditary disorder including Ehler-Danlos (3), Marfan’s (2), neurofibromatosis (1) and an unspecified connective tissue abnormality (1). Seven aneurysms were managed operatively, including one attempted bypass that ultimately required vertebral ligation; the contralateral aneurysm on this patient has not been treated. Open interventions included vertebral bypass with vein, external carotid autograft, and vertebral transposition to the internal carotid artery. Special techniques were used for handling the anastomoses in patients with Ehler-Danlos. While endovascular exclusion was not performed in isolation, two hybrid procedures were performed. There were no perioperative strokes or deaths.

CONCLUSIONS: Primary extracranial vertebral artery aneurysms are rare and occur in patients with hereditary disorders. Operative intervention is warranted in symptomatic patients. Exclusion and reconstruction may be performed with open and hybrid techniques with low morbidity and mortality.
10:00 am – 11:15 am SCIENTIFIC SESSION 4—
THORACIC AORTIC DISEASE
(Encore 4-8)
Moderated by: William J. Quinones-Baldrich, MD
Mark A. Farber, MD

10:00 am – 10:13 am 12. Tevar Using the Redesigned Tag Device
(C-TAG) for Traumatic Aortic Transection: A
Non-Randomized Multicenter Trial
Mark A. Farber, MD1, Joseph S. Giglia, MD2,
Benjamin Starnes, MD3, Scott Stevens, MD4,
Jeremiah Holleman, MD5, Rabih Chaer, MD6,
Jon Matsumura, MD7
1University of North Carolina, Chapel Hill, NC,
2University of Cincinnati, Cincinnati, OH, 3University
of Washington, Seattle, WA, 4University of
Tennessee, Knoxville, TN, 5Carolinas Medical
Center, Charlotte, NC, 6University of Pittsburgh,
Pittsburgh, PA, 7University of Wisconsin,
Madison, WI

OBJECTIVES: To evaluate the safety and efficacy of the CTAG device for the
endovascular repair of traumatic aortic transections.

METHODS: A prospective, non-randomized, multicenter trial was conducted at
21 sites. Primary study endpoints included 30 day all cause mortality and major
adverse events. The efficacy endpoint was freedom from a major device event
(MDE) requiring reintervention through one-month follow-up.

RESULTS: Fifty-one subjects were enrolled between December 2009 and January
2011 with polytraumatic injuries and a mean injury severity score (ISS) of 32 +
14. The proximal mean intimal aortic diameter measured 24 mm while the mean
distal intimal diameter was 22 mm. A total of 56 CTAG devices were implanted
(mean: 1.1/subject, range: 1–2) with a mean patient age of 44 years (range:
21–87) and a male to female ratio of 2:1. Technical success was 100% with an
operative mortality of 0%. Femoral access was utilized in 96% of patients. The
mean procedure time and blood loss was 105 minutes and 148 ml respectively.
All subjects required admission to an intensive care unit with a mean hospital
stay of 13 days. Adjuvant techniques (lumbar drains and induced hypertension)
to prevent paraplegia were used in only 7.8% of patients. No patient developed
paraplegia despite 67% having complete or partial left subclavian artery (LSCA)
coverage and only 6% receiving LSCA revascularization. In addition there were
no device compressions or MDE reported. Overall mortality at 30 days was 7.8%
and all were adjudicated by the CEC as not being device or procedure related.
Serious adverse events occurred in 35.3% of patients. To date there have been no conversions to open repair. Two site-reported minor endoleaks were detected during the mean follow-up of 4.2 months which did not require reintervention.

CONCLUSIONS: The CTAG device appears to be a safe and effective treatment modality for traumatic aortic transection based on 30 day outcomes with no device related events.
10:13 am – 10:26 am 13. Elevated Incidence of Spinal Cord Ischemia Among Patients Undergoing TEVAR for Type B Aortic Dissections

Robert J. Feezor, MD, Salvatore T. Scali, MD, Tomas D. Martin, MD, Philip J. Hess, Jr., MD, Thomas M. Beaver, MD, MPH, Charles T. Klodell, MD, Adam W. Beck, MD
University of Florida, Gainesville, FL

OBJECTIVES: Spinal cord ischemia (SCI) is a dreaded complication of thoracic endovascular aortic repair (TEVAR), and has been reported to have lower rates in dissection patients when compared to other aortic pathologies. Techniques to prevent SCI are inconsistently applied, potentially due to the unclear risk factors, and are often not used in dissection patients due to the low reported incidence of SCI in those patients. We sought to assess our incidence of SCI among patients undergoing TEVAR for both acute and chronic type B aortic dissections, and the potential implication of spinal drainage.

METHODS: A TEVAR database from a single institution was queried for patients with acute (<14 days from symptom onset) or chronic dissection (≥14 days). Pre-operative and post-operative variables were compared.

RESULTS: Between 2000 and 2010, 137 TEVARs were performed for aortic dissections, which represented 22.9% of the 598 TEVARs performed overall. 66 (48.2%) were performed for chronic dissection-related pathology and 71 (51.8%) for urgent/emergent dissection-related pathology. Aortic coverage length and proximal landing zone was similar between acute and chronic patients. A shift in clinical practice occurred during the study period, with 16.7% of patients having spinal drains placed between 2000 and 2006, and 83.2% having spinal drains placed between 2007 and 2011 (p < 0.0001). For the entire study, the overall rate of SCI was 14.6%, with permanent SCI occurring in 9.5%. Acute dissection patients had higher overall rates of SCI and permanent SCI compared to chronic dissection patients (overall: 18.3% vs. 10.6%; permanent: 11.3% vs. 7.6%) (p = 0.23 and 0.56, respectively). The shift to a higher rate of spinal drain usage in the later study period was not associated with a decline in the rate of overall SCI or permanent SCI (overall: 16.7% vs. 14.0%, p = 0.77; permanent: 10.0% vs. 9.3%, p = 1.0).

CONCLUSIONS: The rate of SCI in our patient population is much higher in both acute and chronic dissection patients than rates previously reported in the literature. The reason for this is unclear, but may be attributed to a liberal definition of SCI. Although SCI was observed more frequently in our acute patients, there was no statistically significant difference between the groups. There was no reduction in incidence of SCI or permanent SCI with a more aggressive approach to spinal drainage.
10:26 am – 10:39 am 14. Aortic Remodeling Following TEVAR in Acute and Chronic Type B Dissection

Woodrow J. Farrington, MD, James B. Sampson, MD, Marjan Mujib, MD, MPH, Marc A. Passman, MD, Mark A. Patterson, MD, Steve M. Taylor, MD, Thomas C. Matthews, MD, William D. Jordan, Jr., MD

University of Alabama at Birmingham, Birmingham, AL

OBJECTIVES: To determine the changes in aortic luminal diameter for patients with acute and chronic aortic dissection.

METHODS: Patients treated with TEVAR for type B aortic dissection (AD) were identified from a prospectively maintained registry. Health systems charts, medical correspondence and computed tomography (CT) imaging were reviewed. Measurements for true lumen (TL) and false lumen diameters were recorded at the first transverse section directly inferior to the aortic arch. Maximum diameter (MD) was recorded at the point of maximal dilation regardless of position. Data were analyzed for up to 2 years following endovascular intervention.

RESULTS: Of 52 patients treated with TEVAR for AD, pre and 2 year post op CT was available for analysis and comparison in 30 patients. Fourteen patients (47%) were treated within 14 days of dissection (acute), while 16 patients (53%) were after 14 days (chronic). Indications for treatment were malperfusion (5–16.7%),
expansion (10–33.3%), pain (8–26.7%), and uncontrolled hypertension (7–23.3%).
For all patients at 2 years, MD decreased by a mean of 2.1 mm while TL increased
by a mean of 12.7 mm. Overall, 19 patients (63%) had a decrease in MD and 26
patients (87%) had an increase in TL. Subgroup analysis revealed the following:
patients treated in the acute period, MD decreased an average of 1.8 mm while TL
increased an average of 9.8 mm. For those treated for chronic dissection, MD
decreased an average of 4.1 mm while TL increased an average of 15 mm.

CONCLUSIONS: TEVAR shows stabilization and positive remodeling of both
acute and chronic type B aortic dissection evident by both decreasing maximum
diameter and increasing the true lumen.
10:39 am – 10:52 am

15. Anatomic Distribution of Stroke and Its Relationship to Perioperative Mortality and Neurologic Outcome following TEVAR

 Brant W. Ullery, MD, Michael L. McGarvey, MD, Albert T. Cheung, MD, Ronald M. Fairman, MD, Benjamin M. Jackson, MD, Edward Y. Woo, MD, Nimesh Desai, MD, Grace J. Wang, MD
 Hospital of the University of Pennsylvania, Philadelphia, PA

OBJECTIVE: To assess the anatomic distribution of stroke after TEVAR and its relationship to perioperative mortality and neurologic outcome.

METHODS: A retrospective review was performed for patients undergoing TEVAR between 2001–2010. Aortic arch hybrid and abdominal debranching cases were excluded. Demographics, operative variables, and neurologic complications were examined. Stroke was defined as any new focal or global neurologic deficit with radiographic confirmation of cerebral infarction.

RESULTS: Perioperative stroke occurred in 20 of 530 (3.8%) patients undergoing TEVAR. Mean age of this cohort was 75.2 ± 8.9 years (range, 57–90) and 55% were male. Indication for surgery was degenerative aneurysm (n = 15; mean diameter, 6.8 cm), acute type B dissection (n = 4), or aortic transection (n = 1). Sixty percent of cases were performed either emergently or urgently due to contained rupture (n = 9) or severe back pain (n = 3). Proximal landing zone was either Zone 2 (n = 11) or Zone 3 (n = 9) in all patients. Nine of 20 patients had EEG monitoring, with only 11% demonstrating intraoperative EEG changes. All strokes were embolic in nature. Distribution of stroke included the anterior cerebral circulation (AC) in 8 patients (Zone 2, n = 5) and posterior cerebral circulation (PC) in 12 patients (Zone 2, n = 6). Laterality of cerebral infarction varied, including 5 right, 8 left, and 7 bilateral strokes. Nine strokes were diagnosed <24 hours postoperatively; the remainder occurred at a median of 72 hours post-procedure. Neurologic deficits were focal in 16 patients and global in 4 patients. Presence of bilateral stroke was significantly associated with global deficits (p = 0.01). Overall in-hospital mortality was 20% (n = 4), with those suffering PC strokes trending toward increased mortality (33% vs. 0%; p = 0.12). PC strokes suffered during the emergent/urgent setting had a mortality rate of 50%, whereas all patients suffering AC strokes in the emergent/urgent setting survived (p = 0.21). Patients with AC strokes were more likely than those with PC strokes to achieve complete recovery of neurologic deficits prior to discharge (75% vs. 17%; p = 0.02). Mean ICU and hospital length of stay for those surviving to discharge was 8 ± 11 and 16 ± 11 days, respectively. 75% of patients required an interim stay at a rehabilitation facility post-discharge.

CONCLUSION: While stroke following TEVAR is an infrequent event, our data indicate it is associated with significant morbidity and mortality, particularly among those who suffer posterior circulation strokes.

* Peter B. Samuels Finalist.
MINI PRESENTATIONS

MP22. Simultaneous Thoracic and Aortic Stent Graft Placement for Synchronous Aortic Disease
Salvatore T. Scali, MD1, David H. Stone, MD2, Philip P. Goodney, MD2, Catherine K. Chang, MD1, Robert J. Feezor, MD1, Peter R. Nelson, MD, MS1, Scott A. Berceli, MD, PhD1, Thomas S. Huber, MD, PhD1, Adam W. Beck, MD1
1University of Florida-Gainesville, Gainesville, FL, 2Dartmouth-Hitchcock Medical Center, Lebanon, NH

OBJECTIVES: Simultaneous treatment of multi-level aortic disease (MLAD) is controversial due to the theoretical increase in morbidity. The purpose of this study was to define the outcomes in patients treated electively with simultaneous thoracic (TEVAR) and abdominal aortic (EVAR) endografting for synchronous aortic pathology. The results of the combined procedures were compared to TEVAR alone (TA) to determine the safety of performing both procedures together.

METHODS: Patients treated with simultaneous TEVAR-EVAR (T&E) at a single institution were identified and compared to those treated with TA. All cases with emergent indications were excluded, as well as those requiring chimney stents, fenestrations or visceral de-branching procedures. Demographics, operative details, and peri-procedural complications were recorded. Freedom from re-intervention was determined using survival analysis.

RESULTS: From 2000 to 2011, 595 patients underwent TEVAR, of who 435 were non-emergent. Twenty-two were identified who were treated with simultaneous T&E. There were 18 male patients (81%) with a mean age (±SD) of 66 ± 9 yrs and median follow-up time was 8.8 mos (range 1–34 months). Four patients (18%) had a remote history of previous open aortic surgery prior to the index procedure. Indications included dissection-related pathology (N = 11, 50%), and various combinations of degenerative etiologies (N = 11, 50%) (e.g. aneurysm, penetrating ulcer, post-surgical pseudoaneurysm and atheromatous disease).

Procedural details are outlined in the attached Table. Compared with TA patients, T&E patients had significantly higher blood loss, contrast exposure, fluoroscopy and operative times. The permanent spinal cord ischemia (SCI) rate was 4% for both groups (P = 0.96). The 30-day mortality for T&E was 4.6% (N = 1) compared to 2.1% (N = 9) for TA (P = 0.45). No significant difference in renal injury (defined by a 25% increase over baseline creatinine) occurred between the two groups (P = 0.14).
CONCLUSIONS: As far as we are aware, this is the largest reported series to date of patients undergoing simultaneous T&E for MLAD. Acceptable short term morbidity and mortality can be achieved when compared to TA. Not surprisingly, longer operative and fluoroscopy times, greater contrast exposure, and higher blood loss can be expected, which may lead to increased morbidity to the patient. Short-term re-intervention rates are low but longer follow up is needed to determine procedural applicability and durability.
OBJECTIVES: This study was performed to identify and characterize factors which influence perioperative iliofemoral complications during thoracic aortic endovascular repair (TEVAR).

METHODS: We identified all patients undergoing TEVAR since 2005 (n = 235). Patients were excluded from analysis if they did not have adequate preoperative 3-D aortoiliac imaging (80), or underwent TEVAR via a non-transfemoral approach including prior aortobifemoral graft or planned creation of iliac conduit (18), delivery via carotid (1) or ascending aorta (10). In the remaining study cohort of 126 patients an adapted iliac artery morphology scoring system created by the Society of Vascular Surgery (SVS) was calculated by combining iliac tortuosity, calcification, and representative vessel diameter. Both patient demographics and implanted device characteristics were obtained. Assessment of preoperative imaging was blinded with regards to occurrence of early complication, defined as anything other than successful transfemoral device delivery and primary closure of an arteriotomy.

RESULTS: The complication rate was 12% (n = 15). Complications included iliac rupture or dissection (8), femoral artery patch repair (6), and the inability to deliver the device into the aorta (1). Univariate analysis revealed female gender, preoperative ankle-brachial index (ABI), representative and minimal iliac diameters, diameter difference between iliac artery and sheath size, and iliac morphology score as significant factors (all p < 0.05) in patients who incurred complications (Table 1). Multivariate logistic regression revealed the difference between representative iliac diameter and sheath size (p = 0.014), SVS iliac artery morphology score (p = 0.033) and preoperative ABI (p = 0.012) to be significantly associated with an iliofemoral complication. Early mortality was higher in those with operative complications (13.3% vs. 1.8%, p = 0.069). Four year freedom from limb loss, claudication, or revascularization was 97.9%. Late complications included claudication from iliac stent graft occlusion (1) and iliac revascularization (1).
Table 1: Risk Factors Associated with an Iliofemoral Complication: Univariate Analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Iliofemoral Complication</th>
<th>No Complication</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (n)</td>
<td>15</td>
<td>111</td>
<td>N/A</td>
</tr>
<tr>
<td>Female gender n (%)</td>
<td>12 (80%)</td>
<td>45 (41%)</td>
<td>0.009</td>
</tr>
<tr>
<td>Age (SD)</td>
<td>74.7 (±10.6)</td>
<td>68.1 (±13.2)</td>
<td>0.16</td>
</tr>
<tr>
<td>Iliac Tortuosity Index (SD)</td>
<td>1.33 (±0.24)</td>
<td>1.22 (±0.15)</td>
<td>0.15</td>
</tr>
<tr>
<td>Iliac Calcium Score (SD)</td>
<td>1.15 (±0.53)</td>
<td>0.96 (±0.88)</td>
<td>0.48</td>
</tr>
<tr>
<td>Representative Iliac Diameter in mm (SD)</td>
<td>7.18 (±1.31)</td>
<td>8.64 (±1.99)</td>
<td>0.015</td>
</tr>
<tr>
<td>Minimum Iliac Diameter in mm (SD)</td>
<td>6.16 (±1.0)</td>
<td>7.19 (±1.72)</td>
<td>0.041</td>
</tr>
<tr>
<td>Iliac Morphology Score (SD)</td>
<td>3.77 (±0.72)</td>
<td>2.75 (±1.39)</td>
<td><0.001</td>
</tr>
<tr>
<td>Difference between representative</td>
<td>-1.3 (±1.16)</td>
<td>0.12 (±1.94)</td>
<td><0.001</td>
</tr>
<tr>
<td>iliac diameter and sheath diameter in mm (SD)</td>
<td>-1.3 (±1.16)</td>
<td>0.12 (±1.94)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

CONCLUSIONS: Thoracic aortic endovascular repair can safely be performed via a transfemoral approach. Alternative access in patients with high preoperative SVS iliac artery morphology scores and device delivery size requirements in excess of 1 mm over the native iliofemoral size may reduce perioperative iliofemoral complications. If early complications occur, prompt repair results in low rates of claudication or need for revascularization at late follow up.
MP24. Staged Hybrid Approach Using Proximal TEVAR and Distal Open Repair for the Treatment of Extensive Thoracoabdominal Aortic Aneurysms

William F. Johnston, MD, Gilbert R. Upchurch, Jr., MD, Margaret C. Tracci, MD, Kenneth J. Cherry, MD, Gorav Ailawadi, MD, John A. Kern, MD
University of Virginia, Charlottesville, VA

OBJECTIVES: Repair of extent I and II thoracoabdominal aortic aneurysms (TAAAs) is associated with significant patient morbidity and mortality, while repair of more distal extent III and IV TAAAs has a lower risk of mortality and paraplegia. Therefore, we describe a novel approach using thoracic endovascular repair (TEVAR) as the index operation to convert extent I and II TAAAs to extent III and IV TAAAs amenable to later open aortic repair to minimize patient risk.

METHODS: Between July 2007 and July 2011, 9 staged hybrid operations were performed to treat 1 extent I and 8 extent II TAAAs secondary to aortic aneurysmal disease, including 6 chronic type B dissections, 2 acute type B dissections, and 1 penetrating aortic ulcer. Initially, the proximal descending thoracic aorta was repaired with TEVAR for coverage of the most proximal fenestration in cases of dissection. Carotid to subclavian artery bypass was performed in 5 patients (56%). Interval open distal aortic replacement was performed either in a short-term planned setting or for progressive dilation of the distal aortic segment. In the open repair, the proximal end of the graft was sewn directly to the distal end of the TEVAR and outer wall of the aorta.

RESULTS: Average patient age was 51.4 years and the majority male (67%). Two patients had Marfan syndrome. Post-operative complications following TEVAR included endoleaks [type IA (n = 2); type II (n = 2)], pleural effusion (n = 2), and acute kidney injury (n = 1). Endovascular re-intervention was required in 3 cases. In dissection cases, persistent filling of the false lumen was common and associated with continued distal aortic dilation. Following open graft placement, there were no major complications. In the patients with chronic dissection or penetrating ulcer, average hospital stay was 5.3 days following TEVAR and 7.4 days following open distal TAAA repair. The time from TEVAR to open repair was 332 ± 339 days. Most importantly, there was no 30-day mortality or neurologic deficit after either procedure.

CONCLUSIONS: A staged hybrid approach to extent I and II TAAAs combining proximal TEVAR followed by interval open distal TAAA repair is a safe and effective alternative to traditional open repair. This approach may decrease the significant morbidity associated with single stage open extent I and II TAAA repairs and may be applicable to other TAAA etiologies.
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

MP25. Thirty Day Results of a Prospective Multicenter Trial of a New Thoracic Endograft
William D. Jordan, Jr., MD1, Sina Moainie, MD2, Joshua Rovin, MD3, Joseph Bavaria, MD4, Richard Cambria, MD5, Mark Fillinger, MD6, William McMillan, MD7, Jon Matsumura, MD8
1University of Alabama at Birmingham, Birmingham, AL, 2CorVasc MDs, PC, Indianapolis, IN, 3Cardiac Surgical Associates, St Petersburg, FL, 4University of Pennsylvania, Philadelphia, PA, 5Massachusetts General Hospital, Boston, MA, 6Dartmouth-Hitchcock Medical Center, Lebanon, NH, 7North Memorial Health Care Minneapolis, Robbinsdale, MN, 8University of Wisconsin, Madison, WI

OBJECTIVES: The conformable GORE TAG Device (CTAG Device) is a new TEVAR device designed to be more conformable in curved anatomy, more resistant to compression, and has wider, overlapping sizing range compared to the predicate TAG Device. This study evaluated the safety and effectiveness of the CTAG Device in the repair of descending thoracic aortic aneurysms.

METHODS: This is a prospective, multi-center regulatory study with a primary endpoint of freedom from major device event through one month post-treatment.

RESULTS: One month Results: Fifty-one subjects were enrolled between October 2009 and October 2010. The cohort was 67% male, 86% Caucasian, and median age was 72 years. Mean maximum diameter of both saccular (n = 21, 41%) and fusiform (n = 30, 59%) aneurysms was 58.4 mm. Mean total treatment length was 17 cm with average of 1.7 devices. Procedure time averaged 125 minutes and blood loss averaged 276 mL. There was one 30 day mortality (2%), and 12 patients (24%) experienced a total of 28 serious adverse events including one case of paraparesis but no central strokes. There was one site reported major device event of access failure (98% freedom from major device event). There were 8 site reported endoleaks (15.7%) (3 Type 1A and 5 Type II). There were no conversions, migrations, fractures, compressions, aneurysm ruptures or enlarging aneurysms at one month.

CONCLUSIONS: This next generation thoracic endograft has a low rate of major device events through one month with no graft compressions or device failures. The short term data from this new TEVAR device are consistent with historical data, demonstrate favorable outcomes, confirm low risks for treatment and exhibit a improved benefit-risk profile for the CTAG Device. Follow-up will be continued for 5 years.
11:15 am - 11:20 am INTRODUCTION OF DISTINGUISHED VISITING PROFESSOR
(Encore 4-8)

11:20 am – 12:00 pm DISTINGUISHED VISITING PROFESSOR:
Richard P. Cambria, MD
Chief, Division of Vascular and Endovascular Surgery
Massachusetts General Hospital, Professor of Surgery, Harvard Medical School, Boston, MA
Thoracic Aortic Disease: A 25-year Perspective

12:00 pm – 12:30 pm SOCIETY FOR VASCULAR MEDICINE (SVM) SCIENTIFIC SESSION
James B. Froehlich, MD
University of Michigan, Ann Arbor, MI
Scott Kinlay, MBBS, PhD
Brigham & Women’s Hospital, Boston, MA

12:30 pm – 1:45 pm CONCURRENT LUNCHEON SYMPOSIA
(Dubussy)
Supported by: Gore & Associates

Above-Knee Revascularization with the GORE Hybrid Vascular Graft: Technique, Advantages and Early Results
Nabeel Rana, MD

From Repositioning to Proper Sizing—Continued Innovation in EVAR and TEVAR From Gore
Mark Farber, MD
(Chopin 3)
Supported by: Covidien

Advanced Techniques and the Treatment of Chronic Venous Insufficiency
*Luncheon Symposia are not part of the SCVS scientific program and are not eligible for CME credit through the SCVS joint sponsor.
INCOMING FELLOWS PROGRAM—PART II

- **12:00 pm – 5:00 pm**
 - **INCOMING FELLOWS PROGRAM—PART II**
 - **(Chopin 4)**

Incoming Fellows Program is not part of the SCVS scientific program and are not eligible for CME credit through the SCVS joint sponsor.

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 pm – 12:20 pm</td>
<td>Lunch</td>
</tr>
<tr>
<td>12:20 pm – 12:30 pm</td>
<td>Welcome Back</td>
</tr>
<tr>
<td>12:30 pm – 1:15 pm</td>
<td>Imaging: How to Utilize the Proper Imaging Equipment for Diagnosis</td>
</tr>
<tr>
<td></td>
<td>Mark D. Fleming, MD</td>
</tr>
<tr>
<td>1:15 pm – 3:00 pm</td>
<td>Introduction to Endovascular: The Basics</td>
</tr>
<tr>
<td></td>
<td>Nabeel Rana, MD</td>
</tr>
<tr>
<td>3:00 pm – 3:15 pm</td>
<td>Break</td>
</tr>
<tr>
<td>3:15 pm – 4:15 pm</td>
<td>Aorta Basics</td>
</tr>
<tr>
<td></td>
<td>Gautam Shrikhande, MD</td>
</tr>
<tr>
<td>4:15 pm – 4:45 pm</td>
<td>Hands-On Deployment of Flex and Pro-Form</td>
</tr>
<tr>
<td>4:45 pm – 5:00 pm</td>
<td>Closing Remarks and Final Questions</td>
</tr>
<tr>
<td>5:00 pm</td>
<td>Program Conclusion and Issue of Cook Books</td>
</tr>
<tr>
<td>12:30 pm</td>
<td>FREE AFTERNOON/PAVILION TIME</td>
</tr>
</tbody>
</table>
6:00 pm – 9:00 pm SCVS TOP GUN COMPETITION
(Debussy)
Supported by: Gore & Associates, Medtronic, Methodist DeBakey, and Philips
*Top Gun Competition is not part of the SCVS scientific program and are not eligible for CME credit through the SCVS joint sponsor.

6:00 pm – 9:00 pm SCVS YOUNG VASCULAR SURGEONS DINNER SYMPOSIUM
(Chopin 2)
Supported by: Medtronic
*Young Vascular Surgeons Program is not part of the SCVS scientific program and are not eligible for CME credit through the SCVS joint sponsor.

6:00 pm Reception

6:30 pm Dinner

6:40 pm “Working Within the System to Build an Aortic Center of Excellence”
Speaker: Apostolos Tassiopoulos, MD

7:00 pm “Moving Locations and Transition to a Senior Level Practice”
Speaker: Frank Arko, MD

7:20 pm “How to Balance Everything While Building Your Clinical Practice”
Speaker: Jennifer Ash, MD

7:40 pm Full Panel Q&A
Friday, March 16

6:45 am – 8:00 am BREAKFAST SYMPOSIUM
(Chopin 2)
Supported by: Endologix
Breakfast with the Experts: Challenging EVAR Cases
*This breakfast symposium is not part of the SCVS scientific program and are not eligible for CME credit through the SCVS joint sponsor.

7:00 am – 8:00 am CONTINENTAL BREAKFAST IN EXHIBIT HALL
(Encore 1-3)

7:00 am – 5:00 pm EXHIBITION HALL HOURS
(continuous beverage service)
(Encore 1-3)

7:00 am – 5:00 pm REGISTRATION DESK
(Promenade)

7:00 am – 5:00 pm SPEAKER READY ROOM
(Schubert)
8:15 am – 9:40 am SCIENTIFIC SESSION 5—
AORTIC ANEURYSM
(Encore 4-8)

Moderated by: Thomas C. Bower, MD
Alan B. Lumsden, MD

8:15 am – 8:28 am 16. Benchmark Renal Outcome Measures of Open Repair of Complex Abdominal Aortic Aneurysms for Comparison with Fenestrated Endografts
Alexandre A. Pereira, MD, Gustavo S. Oderich, MD, Tiziano Tallarita, MD, Manju Kalra, MBBS, Audra A. Duncan, MD, Peter Gloviczki, MD, Thanila A. Macedo, MD, Stephen Cha, MD, Thomas C. Bower, MD
Mayo Clinic, Rochester, MN

PURPOSE: Renal outcomes after open repair of complex abdominal aortic aneurysms (cAAA) have been poorly described. This study provides a detailed, long-term analysis of clinical and anatomical renal outcome measures in a cohort of patients treated by open repair of cAAs.

METHODS: We retrospectively reviewed 461 patients treated by open repair of juxtarenal, suprarenal and type IV thoracoabdominal aneurysms (TAAA) between 2000 and 2010. Renal outcome measures included changes in laboratory and clinical markers (serum creatinine, estimated glomerular filtration rate [eGFR], renal replacement therapy [RRT]) and anatomical parameters (pole-pole kidney length, cortical-medullary thickness [CMT] and new diagnosis of renal infarct, renal artery stenosis or occlusion). Anatomical parameters were independently reviewed by two investigators in 200 patients who had paired CT studies obtained prior to and >12 months after the operation. Renal function deterioration (RFD) was defined by >30% decrease in eGFR. End-points were freedom from RFD, RRT, and changes in anatomical measurements.

RESULTS: There were 354 male and 107 female patients with mean age of 73 ± 8 years. Operative mortality was 1.3% (6/461). Early RFD occurred in 184 patients (40%), returning to baseline values within 3 months in all except for 16 patients (8%). Other 8 patients (4%) had additional RFD >3 months after the operation. RRT was required in 8 patients (4%), and was permanent in four (2%). After a median follow up of 44 months, freedom from RFD at 5-years was 87 ± 3%, 85 ± 5%, and 65 ± 9% for juxtarenal, suprarenal, and type IV TAAAs, respectively. Independent predictors of RFD were renal artery disease and increasing level of aneurysm complexity. Anatomical changes included a decrease in kidney length in 60 patients (30%, mean 2.5 mm), decrease in CMT in 20 (10%, mean 1 mm), and new diagnosis of renal infarct in 12 (6%) or renal artery stenosis/occlusions in 24 (12%).
CONCLUSIONS: RFD was common (40%) after cAAA repair, but most patients (92%) returned to their baseline values within 3 months. The presence of renal artery disease and increasing level of aneurysm complexity correlated with higher rates of RFD. These renal outcome measures herein described provide a benchmark for future comparison with studies evaluating the use of fenestrated endografts.
OBJECTIVES: Aptus is the first endograft with EndoStaples for proximal fixation. A study evaluated standard EVAR safety and efficacy endpoints.

METHODS: A prospective single-arm IDE study was performed. The Aptus System includes a modular endograft and stapling system. MAEs were defined as death, MI, stroke, renal failure, respiratory failure or paralysis at 30d. Composite success was defined as delivery success and absence of Type I/III endoleak, migration >10 mm, rupture and open conversion at 1 yr.

RESULTS: 155 patients were enrolled. 147 and 121 pts completed 1 and 2yr f/u respectively. 153 (99%) were successfully implanted. 2 pts were acutely converted due to cannulation failure and misdeployment. 810 total staples were implanted (median 5/pt). Primary safety and efficacy endpoints were achieved in 98% (goals >87% and >80% respectively), though thrombus-related events (TRE) occurred in 34.8%, adjudicated by CEC as device related. Shear stress induced platelet aggregation in out-of-spec docking area caused TRE. TRE resulted in 52 interventions in 49 pts (31.6%) thru 2 yrs, with no related amputation or death. There was 1 Type I leak in a patient that did not meet proximal neck inclusion criteria and 1 Type III leak with an aortic cuff that was not stapled. There were no late Type I/III leaks. 2 cases of migration were seen at 2yr f/u, both due to neck elongation and no evidence of graft or staple dislocation, Type I leak or need for re-intervention. Type II leak at 2yrs was 12%. AAA size decreased in 72.5%, was stable in 22% and increased in 3% at 2yrs; all patients with increased AAA had Type II leaks. Through 2yr f/u there are no ruptures, AAA-related deaths, stent fracture, staple displacement, or late Type I/III endoleaks.

CONCLUSIONS: The STAPLE-2 trial met safety and efficacy endpoints. An abnormally high rate of TREs occurred due to a manufacturing discrepancy. Excluding TRE, results thru 2 yrs demonstrate device fixation and seal integrity, a high rate of sac regression and few re-interventions.
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

8:41 am - 8:54 am 18. Natural History of Saccular Aortic Aneurysms
Eric K. Shang, MD, Derek P. Nathan, MD, William W. Boonn, MD, Ivan A. Lys-Dobradin, MD, Ronald M. Fairman, MD, Edward Y. Woo, MD, Grace J. Wang, MD, Benjamin M. Jackson, MD
University of Pennsylvania, Philadelphia, PA

OBJECTIVES: Repair of saccular aortic aneurysms (SAA) is frequently recommended based on a perceived predisposition to rupture, despite little evidence that these aneurysms have a more malignant natural history than fusiform aortic aneurysms.

METHODS: The radiology database at a single university hospital was searched for the computed tomographic (CT) diagnosis of SAA between 2003 and 2011. Patient characteristics and clinical course, including the need for surgical intervention, were recorded. SA evolution was assessed by follow-up CT, where available. Multivariate analysis was used to examine potential predictors of aneurysm growth rate.

RESULTS: 322 saccular aortic aneurysms were identified in 284 patients. There were 153 (59.0%) men and 131 women with a mean age of 73.5 ± 10.0 years. SAA were located in the ascending aorta in 2 (0.6%) cases, the aortic arch in 24 (7.4%), the descending thoracic aorta in 227 (70.5%), and the abdominal aorta in 79 (24.5%). 113 (40.0%) patients underwent surgical repair of SAA. 63 patients (54.3%) underwent TEVAR, 24 underwent EVAR (20.7%) and 29 (25.0%) required open surgery. The average maximum diameter, measured perpendicular to the aortic lumen centerline and including the aortic lumen diameter, of SAA was 5.0 ± 1.7 cm. In repaired aneurysms, the mean diameter was 5.4 ± 1.4 cm; in unrepaired aneurysms it was 4.4 ± 1.1 cm (P < 0.001). Eleven patients (3.9%) had ruptured SAA on initial scan. Of the initial 284 patients,
50 patients (with 54 SAA) had CT follow-up after at least 3 months (mean 23.2 ± 19.0 months). Aneurysms grew on average 2.8 ± 2.9 mm/year. Aneurysm growth was only weakly related to initial aortic diameter ($R^2 = 0.19$ by linear regression, $P = 0.09$ by multivariate regression). Decreased calcium burden ($P = 0.03$) and increased patient age ($P = 0.05$) predicted increased aneurysm growth.

CONCLUSIONS: SAA were not found to have a markedly malignant natural history. Close clinical follow up in the individual patient and further clinical research are necessary to determine the optimal management of SAA.
BACKGROUND: Fenestrated-Branched stent-grafts have been developed as an endovascular alternative for the treatment of complex aortic aneurysms. However, it can take as much as 6–12 weeks to manufacture these devices, and therefore, they cannot be used to treat aortic emergencies. We reviewed our experience with surgeon-modified fenestrated-branched stent-grafts (sm-FBSG) in high-risk patients who presented emergently with ruptured or symptomatic complex aortic aneurysms.

METHODS: Retrospective review of all patients treated with sm-FBSG at our institution. Patients presenting with acute symptoms or emergent indication for repair were analyzed.

RESULTS: Thirteen high-risk patients (8 ASA class IV and 5 ASA class III) (10 male, mean age 71 years) presented with symptomatic (n = 5) or ruptured (n = 8) aortic aneurysms with an average size of 8 cm (range 5–12 cm). Twelve patients (92%) had prior aortic surgery or a hostile abdomen, 77% had heart failure with an ejection fraction of <35%, and 85% had severe pulmonary dysfunction. Four aneurysms were para-renal and 9 were thoracoabdominal. The average number of visceral vessels treated per patient was 3 (range 2–4) with 37 total branches performed. Endografts were successfully implanted in all patients. There were no cases of paraplegia, no intra-operative deaths, and one death occurred within 30 days (7%). Re-intervention was necessary in two cases; one for a type 3 endoleak and another for a retroperitoneal hematoma. Morbidity included 1 myocardial infarction, 2 patients with transient respiratory failure, and two with transient renal insufficiency not requiring dialysis. Mean postoperative stay in ICU was 3 days, and in-hospital 9 days. At a mean follow-up of 5 months (range 0–12), 3 patients died of non-aneurysm related causes. Branch vessel patency was 100%, and no late re-interventions were necessary. No type I or III endoleaks occurred, and one type II endoleak is under observation.

CONCLUSION: Sm-FBSG may play an important role in the treatment of select patients with symptomatic or ruptured complex aortic aneurysms that are prohibitive risks for open surgery and in whom endovascular repair cannot be delayed to allow implantation of a custom made commercial device. Until an “off the shelf” fenestrated-branched device is created that does not require a prolonged waiting period, this may be the best option to treat patients with symptomatic or ruptured complex aneurysms that are at excessively high surgical risk.
SCVS • 40TH ANNUAL SYMPOSIUM ON VASCULAR SURGERY

MP27. Initial Pilot Study Outcomes of the Ventana Fenestrated Stent Graft System for Endovascular Repair of Juxtarenal and Pararenal Aortic Aneurysms

Daniel Clair, MD1; Andrew Holden, MD2; Andrew Hill, MD2; Renato Mertens, MD3; Leopoldo Marine, MD4
1Cleveland Clinic, Cleveland, OH, 2Auckland City Hospital, Auckland, New Zealand, 3Catholic University Hospital, Santiago, Chile, 4Catholic University, Santiago, Chile

OBJECTIVES: Customized endovascular stent grafts have been investigated as an alternative to open surgery for repair of more complex juxtarenal aortic aneurysms. The substantial time required to design and manufacture these devices has led to the desire for a more standardized endovascular system. The Ventana stent graft system was designed as a potential off-the-shelf endografting option with the intent to fit the majority of juxtarenal or pararenal aneurysm morphologies. It includes the anatomically-fixed bifurcated stent graft, a proximal extension with a fenestrated, oversized mid-section and proximal scallop to accommodate the renal arteries, superior mesenteric artery (SMA) and celiac axis, and covered renal stent grafts. We report the initial Pilot Study results to assess the initial safety and feasibility of this potential "off-the-shelf" system approach.

METHODS: Following Ethics Committee approvals at two centers, consenting patients were evaluated for eligibility. Patients with aneurysms abutting or including the renal artery orifices who were not candidates for standard infrarenal endograft placement due to proximal aortic neck morphology were further assessed for anatomic suitability, including: stable infra-SMA aortic neck ≥15 mm; renal artery orifices within 35 mm from SMA origin and within 30 mm of each other axially; absence of severe renal occlusive disease (>70% stenosis); and adequate distal anatomy for device placement.

RESULTS: Among 15 patients with juxtarenal or pararenal aneurysms having mean age of 77 years (87% male), mean vascular measurements include sac diameter 5.9 cm; infrarenal neck length 6.9 mm; infra-SMA neck length 25 mm; and renal artery spacing 6.9 mm axially and 147° radially (clockface). All devices were successfully implanted, and all renal and visceral arteries were preserved. Mean procedure time was 108 minutes with a mean fluoroscopy time of 55 minutes utilizing 254 cc of contrast. Five patients received blood products. Mean time to hospital discharge is 3.3 days. Among all patients reaching one month follow-up and three patients reaching six month follow-up, no Type I/III endoleak, migration, renal artery loss/damage, or renal infarcts is observed. One late non-aneurysm related death occurred secondary to accidental fall. One secondary procedure for limb kinking/occlusion has been performed.
CONCLUSIONS: Initial Pilot Study experience with the Ventana fenestrated stent graft system for juxtarenal and pararenal aneurysms is feasible and safe. More extensive evaluation to assess efficacy over the mid and long-term is warranted.
MP28. Efficacy of Translumbar Glue Embolization for Type II Endoleaks in Patients with Growing Aneurysms After EVAR

Michael Dudkiewicz, MD, Caron Rockman, MD, Frank Veith, MD, Mark Adelman, MD, Thomas Maldonado, MD, Neal Cayne, MD

NYU Langone School of Medicine, New York, NY

OBJECTIVE: The purpose of this study is to evaluate the effectiveness of translumbar glue embolization (GE) of type II endoleaks in patients with growing aneurysms after EVAR.

METHODS: Thirteen patients (mean age 78 ± 7.1 years; 77% male) with documented type II endoleaks on computed tomography (CT) scan and growing aneurysms after EVAR were retrospectively identified. All patients had post-EVAR growth ≥ 5 mm. The patients underwent attempted translumbar angiogram (TLA) and GE of the type II endoleak with n-butyl cyanocrylate glue (nBCA). Co-morbidities of the patient cohort included hypertension (93%), diabetes (31%), hyperlipidemia (62%), coronary artery disease (69%), and renal failure (15%). Average follow-up after embolization was 21 ± 16 months (range 4–66 months).

RESULTS: A type II endoleak nidus with outflow vessels was identified in 9/13 (69%) patients and TLA. All nine were successfully embolized with nBCA (group 1). In 4/13 (31%) patients no clear endoleak nidus was identified on TLA, and nBCA glue was blindly injected into the aneurysm sac (group 2). In 9/9 (100%) patients in group 1, aneurysm sac size stabilized or shrunk (7.1 ± 1.2 cm to 6.5 ± 1.4 cm) over a mean time period of 16 ± 9 months. In 2/4 (50%) of the group 2 patients, the aneurysm sac continued to grow despite blind GE, and open ligation of back bleeding vessels was performed. The remaining 2 patients in group 2 stabilized aneurysm growth over 19 ± 7 months. There was no evidence of spinal ischemia, colon ischemia, or hemorrhage from GE in either group.

CONCLUSIONS: TLA and GE of a type II endoleak nidus is safe and can stabilize growing AAAs after EVAR. Blind sac GE of a type 2 endoleak without identification of an endoleak nidus may not stabilize growing AAAs after EVAR. Patients with continued AAA growth after TLA and GE may be successfully treated with open ligation of the back bleeding vessels.
MP29. Do Patent Aortic Side Branches Affect Aneurysm Sac Growth?
David J. Dexter, MD, Caron Rockman, MD,
Mark A. Adelman, MD, Firas Mussa, MD,
Neal Cayne, MD, Todd Berland, MD,
Frank Veith, MD, Thomas Maldonado, MD
New York University, New York, NY

OBJECTIVES: Endoleak and sac growth remain unpredictable occurrences following EVAR. This study was designed to evaluate the impact of patent Inferior Mesenteric Artery and Lumbar Arteries on aneurysm sac behavior after EVAR.

METHODS: Pre-and postoperative CT scans from 133 abdominal aortic aneurysms treated with EVAR were analyzed. The status of all Lumbar Arteries and the IMA were evaluated for patency and size. Sac change was defined as a >2.5 mm difference in diameter when compared to preoperative measurements.

RESULTS: The number of patent lumbars was highly predictive of endoleak (1–3 = 6.7%, 4–6 = 35.6%, 7–9 = 57.8%, p < .05), as was the presence of a patent IMA (45.4% vs. 3.1%, p < .05). The size of patent lumbars was not predictive of endoleak. Patients with at least one patent lumbar artery >3 mm were more likely to experience sac diameter growth postoperatively (28.4% vs. 11.4%, p < .05). Similarly, patients with a patent IMA on preoperative CT were more likely to experience sac growth, although this did not reach statistical significance (26% vs. 11%, p = .08). The more patent lumbar arteries preoperatively, the more likely a patient experienced sac growth postoperatively (1–3 = 1%, 4–9 = 21%, p = .06). Multivariate analysis showed that the number of patent lumbar arteries was an independent predictor of sac growth postoperatively.

CONCLUSIONS: The presence of patent lumbars, and patent IMA on preoperative imaging appears to be associated with a post-operative endoleak, and an increase in sac diameter. Aneurysms with fewer patent lumbar arteries, smaller arteries and occluded IMA are less likely to grow and may require less vigilant postoperative imaging. Similarly, preoperative patients with a patent IMA, patent lumbar artery >3 mm in diameter, or at least 4 patent lumbar arteries, can be considered for preoperative embolization of these vessels, as these patients have a high chance of experiencing endoleak and sac growth which will may require intervention.
MP30. Aneurysmal Degeneration and Changes in Aortic Diameter After Open Repair of Complex Abdominal Aortic Aneurysms
Tiziano Tallarita, MD, Gustavo S. Oderich, MD, Alexandre Pereira, MD, Thamila A. Macedo, MD, Manju Kalra, MBBS, Audra A. Duncan, MD, Peter Gloviczki, MD, Stephen Cha, MD, Thomas C. Bower, MD
Mayo Clinic, Rochester, MN

PURPOSE: Rates of secondary aneurysmal degeneration and changes in aortic diameter have not been described in patients undergoing open repair of complex abdominal aortic aneurysms (cAAAs), yet these events may affect the choice and extent of repair. This study analyzed anatomical measurements of the aorta in a cohort of patients treated by open repair of cAAAs.

METHODS: We retrospectively reviewed the clinical data and digital imaging studies of 201 patients treated by open repair of juxtarenal, suprarenal and type IV thoracoabdominal aortic aneurysms (2000–2010). All patients had clinical follow up and paired CT imaging studies obtained prior to and >12 months after the operation. Anatomical measurements included centerline of flow analysis to determine the location of normal aorta, defined by parallel aortic wall without aneurysm involvement. Axial imaging of the descending thoracic aorta and visceral aortic segments was used to determine changes in aortic diameter and development of new aneurysms. Serial anatomical measurements were analyzed taking into consideration weather the proximal graft anastomosis was placed within normal or abnormal aorta.

RESULTS: There were 157 male and 44 female patients with mean age of 73 ± 8 years. Median follow up was 39 months. The proximal graft anastomosis was placed in normal aorta in 150 patients and within abnormal segments in 51. A >3 mm increase in aortic diameter at any location was noted in 116 patients (57%), averaging 5.5 ± 3 mm and most frequently being noted at the supra-celiac level. Changes in aortic diameter at any location and adjacent to the anastomosis were noted in 80 (53%) and 24 (16%) patients who had anastomosis in normal aorta (mean 5.9 ± 2 mm), compared to 36 (71%) and 12 (24%) who had anastomosis in abnormal segments (mean 5.6 ± 3 mm). A new aortic aneurysm was diagnosed in 16 patients (8%), including 6/150 (4%) who had anastomosis in normal and 10/51 (20%) who had anastomosis in abnormal segments (P < 0.05). Re-intervention for aortic aneurysm was needed in 6 patients (3%), including 2 (1%) who had para-anastomotic aneurysms and 4 (2%) who had descending thoracic aortic aneurysms.

CONCLUSION: Changes in aortic diameter are common (57%) after open repair of cAAAs. New aortic aneurysms were more common (20%) if the anastomosis was placed in abnormal segments, yet re-interventions for para-anastomotic aneurysms were needed in only 1% of patients.
OBJECTIVE: The management of infected aortic endografts is a challenging endeavor. Treatment of this problem has not been well defined as it is fairly uncommon. However, the incidence is increasing. This study examines the results of treatment at a single center for this morbid process.

METHODS: A retrospective review was performed of patients treated for infected abdominal or thoracic endograft infection following previous EVAR or TEVAR. Data was reviewed for patient demographics, details of initial endograft implantation, presentation and timeline of subsequent infection, management of infected grafts, and outcomes during follow-up.

RESULTS: Between 2000–2006, 2 patients were treated for infected endografts. However, from 2006–2011, 14 patients underwent treatment. Sixteen patients in total were treated (thoracic:4, abdominal:12). Mean time to presentation with infection from endograft implant was 208 days, with over half (56%) presenting within the first 3 months. Tissue and/or blood cultures were positive in 12/16 growing E.Coli (n = 1), Group A streptococcus (n = 3), Methicillin-resistant-Staph Aureus (n = 2) or polymicrobial infections (n = 6). The other 4 patients were culture negative with CT evidence of gas surrounding the endograft and clinical sepsis. Ten patients (abdominal:8, thoracic:2) were treated with endograft explantation. The remaining six patients lacked CT evidence of gas surrounding the endograft and clinical sepsis. Ten patients (abdominal:8, thoracic:2) were treated with endograft explantation. The remaining six patients lacked CT evidence of advanced infection (n = 3) or were considered too high-risk for explant (N = 3) and were therefore managed conservatively without explant (abdominal:4, thoracic:2). Mortality was 37.5% (n = 6) and was higher for thoracic stent infections (n = 3, 75%) (p < 0.001) and patients presenting with aorto-enteric or aorto-bronchial fistulas (n = 6/9, 67%) (p < 0.001). Survival was 100% (n = 7) in patients without evidence of aorto-enteric or aorto-bronchial fistula. Overall survival was similar between those managed surgically (n = 4, 44%) or medically (n = 2, 33%) (p = 0.81). Mean follow-up of survivors was 27.1 months. All survivors remain on long-term suppressive antibiotics. Two additional patients died of unrelated causes during follow-up.

CONCLUSION: Endograft infection is a rare but increasing complication after EVAR/TEVAR which carries significant associated morbidity and mortality. Aorto-enteric or aorto-bronchial fistulas are a common presentation which portends significantly worse prognoses. Surgical excision has been the standard of care but conservative management with IV antibiotics may be of benefit in certain patients.
MP32. Total Percutaneous Aortic Aneurysm Repair: Predicting the Learning Curve and Its Failures
Carlos F. Bechara, MD, MS1, Peter H. Lin, MD, MS1, Neal Barshes, MD, MPH1, Huiting (Tina) Chen, MD2, George Pismisis, MD3, Panagiotis Kougias, MD3
1Baylor College of Medicine, Houston, TX, 2University of Michigan, Ann Arbor, MI

INTRODUCTION: Percutaneous endovascular aneurysm repair (PEVAR) has been shown to be feasible, however, technical success is variable, reported between 46.2%–100%. The objective of this study was to quantify the learning curve of the PEVAR closure technique and identify predictors of closure failure.

METHODS: We recorded patient and procedure-related characteristics in 99 consecutive patients who underwent PEVAR over a 30-month period in a single academic institution. A suture-mediated closure device (Proglide or Prostar XL) was used. Forward stepwise logistic regression was used to investigate associations between the failure of the closure technique and a number of patient and operative characteristics. To assure objective assessment of the learning curve, a time-dependent covariate measuring time in calendar quarters since the beginning of the PEVAR program was introduced in the model. Poisson regression was used to model the trend of observed failure events of the percutaneous technique over time.

RESULTS: Overall PEVAR technical success was 82%. Type of closure device (p < 0.35), patient’s body mass index (p < 0.86), use of a hydrophilic sheath (p < 0.69), type of anesthesia (p < 0.95), femoral artery diameter (p < 0.09), femoral artery calcification (p < 0.56), and sheath size as measured in Fr (p < 0.17) did not correlate with closure failure rates. There was a strong trend for decreasing number of failure events over time (p < 0.007). The average decrease in the odds of technical failure was 24% per calendar quarter. The predicted probability of closure failure decreased from 45% per patient at the time of the initiation of our PEVAR program to 5% per patient at the end of the 30-month period. The learning curve appeared to be steepest during the first 18 months (Figure 1). There were 2 postoperative access-related complications that required surgical repair. Need for surgical cutdown in the event of closure failure prolonged the operative time by a mean of 45 minutes (p < 0.001). No groin infections were seen in the percutaneous group or the failed group.

CONCLUSION: Technical failure can be reduced as the surgeon gains experience with the suture-mediated closure device utilized during PEVAR. Previous experience with the Proglide device does not seem to influence the learning curve.
Endovascular Aortoiliac Aneurysm Repair: Comparing Outcomes with Vascular Plugs vs. Coil Embolization of the Internal Iliac Artery

Travis P. Webb, MD, David P. Franklin, MD, John L. Gray, MD, Robert P. Garvin, MD, Jennifer A. Sartorius, MS, James R. Elmore, MD

Geisinger Medical Center, Danville, PA

OBJECTIVES: AAA often involve iliac arteries and aortic stent-graft limbs may need to cover the internal iliac arteries (IIA). Retrograde flow from the IIA can lead to progression of the aneurysmal disease from a type II endoleak. Embolization of the IIA prior to stent graft repair, by coils or Amplatzer vascular plugs (AVP), have been used to prevent this complication. Both coil embolization (CE) and AVP embolization (AVPE) have been shown to be successful techniques, but there is less data regarding AVP. We analyzed our single institution outcomes and complications, of CE and AVPE. This data represents a larger series of IIA embolization prior to AAA endograft placement than previously reported.

METHODS: A retrospective chart review using the electronic health record was undertaken reviewing all patients that had undergone IIA embolization prior to AAA stent graft repair. A total population of 55 patients: 27 patients underwent CE and 28 patients underwent AVPE. Patient characteristics and comorbidities were documented. Patient outcomes and complications that were recorded are discussed in the results section.

RESULTS: There were no major complications (death, MI, stroke) within 6 months post procedure. Buttock claudication at one month was 14.8% for CE and 28.6% for AVPE cases (p = 0.078). Buttock claudication persisted in 7.4% of CE and 17.9% for AVPE cases (p = 0.054) at one year. Unintended coil embolization occurred in 2 CE cases. There was one endoleak in each group on the 6 month CT scan that was unrelated to the site of IIA embolization (endoleak rate, P = NS).

Among the cases performed in a staged fashion, separate from the AAA procedure, significantly lower fluoroscopy time (CE; 28.9 min vs. AVPE 15.6 min, p = 0.014), procedure time (CE; 99.3 min vs. AVPE 67.9, p = 0.035) and radiation dosage (CE; 919Gycm² vs. AVPE: 367 Gycm², p = 0.017) were observed in the AVP cases.

CONCLUSIONS: Our study found that CE and AVPE provide effective IIA embolization with low complication rates. Buttock claudication did not occur in the majority of patients, and completely resolved in 41% of the patients by one year. AVPE took significantly less time, therefore decreasing fluoroscopy time and radiation dosage. Given these results, we feel that AVP should be used as the preferred method for IIA embolization prior to AAA repair, if allowed by patient anatomy.
9:40 am – 10:15 am COFFEE BREAK IN EXHIBIT HALL & ePOSTER VIEWING
 (Encore 1-3)

10:15 am – 11:15 am INTERNATIONAL PANEL
 (Encore 4-8)
 “Robotic Endo-Surgery; Fact or Fiction?”
 Nicholas J.W. Cheshire, MD
 St. Mary Hospital, London, United Kingdom
 “CAS Offers Comparable Results with CEA with Appropriate Operator Training and Patients Selection”
 Piergiorgio Cao, MD
 University of Perugia, Italy
 “Biomarkers Reflect Plaque Instability: Another Myth or an Actual Fact?”
 Christos Liapis, MD
 Athens University Medical School, Athens, Greece

11:15 am – 11:20 am INTRODUCTION OF THE PRESIDENT
 (Encore 4-8)

11:20 am – 12:20 am PRESIDENTIAL ADDRESS
 “The Best of Times, The Worst of Times”
 Michel S. Makaroun, MD
 University of Pittsburg Medical Center, Pittsburgh, PA

12:30 pm – 1:30 pm MEMBERS’ BUSINESS LUNCHEON
 (Chopin 2-3)
 *The Member’s Business Luncheon is not part of the SCVS scientific program and are not eligible for CME credit through the SCVS joint sponsor.

12:30 pm – 1:30 pm LUNCH WITH INDUSTRY
 (Encore 1-3)
1:30 pm – 2:15 pm KARMODY POSTER COMPETITION—
Round 1
(Encore 4-8)

Moderated by: Thomas C. Bower, MD
Mark G. Davies, MD

TOPIC: ANEURYSM

Moderator: George H. Meier, MD

P1. Do Shorter Hospital Stays Increase the Risk of Readmission and Mortality in Patients Undergoing High-Risk Vascular Surgery?

Benjamin S. Brooke, MD, PhD1, Philip P. Goodney, MD2,
Mark F. Fillinger, MD1, Richard J. Powell, MD1,
Lori L. Travis, MS2, Lee Lucas, PhD3,
David C. Goodman, MD4, Jack L. Cronenwett, MD1,
David H. Stone, MD1

1Dartmouth-Hitchcock Medical Center, Lebanon, NH, 2Maine Medical Center, Portland, ME,
3Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH

OBJECTIVES: Health policy aimed at reducing length of stay (LOS) following vascular surgery has been broadly implemented to reduce costs. Many question, however, if early discharge may increase the risk of readmission or mortality, both important hospital quality metrics. To address this question, we examined the relationship between LOS and 30-day outcomes among patients undergoing a high-risk vascular surgery procedure, Thoracic Aortic Aneurysm (TAA) repair.

METHODS: Using Medicare claims 2000–2007, we identified all patients who underwent elective thoracic endovascular aneurysm repair (TEVAR) and open repair for non ruptured TAA. For each procedure, we examined the correlation between LOS and 30-day readmission and mortality rates. Predictors of readmission were evaluated using logistic regression models controlling for patient comorbidities, perioperative complications and discharge location.

RESULTS: Our sample included 13,155 patients, of which 10,803 (82%) underwent open TAA repair and 2,319 (18%) underwent TEVAR. Most patients were Caucasian (93%), male (56%) with a mean age of 74 years, and were discharged home (74%) following their procedures. Patients discharged home following TEVAR had lower mean LOS (5.2 days vs. 8.9 days; P < 0.001) and 30-day readmission rates (18% vs. 20%; P < 0.05) as compared to open TAA repair, although there was no difference in 30-day post-discharge mortality rates between procedures. Among patients who were discharged home, hospital LOS
was directly related to 30-day readmission (Figure, Panel A) and 30-day post-discharge mortality (Figure, Panel B). In multivariable analysis, patients were more likely to be readmitted if they had a longer LOS (OR:1.15; 95% CI: 1.09–1.20; P < 0.001), higher Charlson comorbidity score (OR:1.08; P < 0.001), or any major post-operative complication (OR:1.10; P < 0.05).

CONCLUSIONS: Patients discharged home with short LOS (<3 days for TEVAR, <7 days for open TAA repair) following high-risk vascular surgery are the least likely to be readmitted and had the lowest rates of 30 day mortality. While indirect, these data suggest (1) health policy aimed at early discharge is safe, even in high-risk surgery, and (2) quality measures based on readmission need to consider patient-level characteristics.
P2. Developing Training Models for Advanced Endovascular Skills: Type II Endoleaks in Abdominal Aortic Aneurysms
Jean Bismuth, MD, Cassidy Duran, MD, Ponraj Chinnadurai, MD, Stephen Igo, Michael A. Donovan, Matthew S. Jackson, Alan B. Lumsden, MD
The Methodist Hospital/Debakey Heart & Vascular Center/Weill Cornell Medical College, Houston, TX

INTRODUCTION: Endovascular virtual reality simulators provide training in a wide array of endovascular skills, but are not able to provide comprehensive instruction for all vascular procedures. This is particularly the case in procedures that require advanced imaging techniques, tasks that are not strictly endovascular and those that involve new tools. One such skill is Type II endoleak embolization by translumbar approach. Type II embolization was rated by The Society for Vascular Surgery members as one of the most desirable techniques to learn.

METHODS: We developed a simulator-based educational program, which provided instruction on relevant anatomy and pathology, demonstrated the steps to the procedure including the imaging (3D angioCT reconstruction with iGuide), as well as define and demonstrate pitfalls. The simulator was made from multiple materials including a procedure specific silicone aortic model, a mannequin, and pulsatile flow pump (Image: A) silicone model B) Entire model prone C) Translumbar access with sheath in place D) AngioCT in OR). An aortic endograft was placed to exclude the aneurysm and the silicone aortic model provided an endoleak. Translumbar access was demonstrated, with needle entry into the aneurysm sac. Participants were asked to complete a questionnaire on their experience with the course and model, rating on a standard Likert 5 point scale.

RESULTS: 21 participants completed the questionnaire and rated the course. Average scores gave faculty knowledge 4.7, teaching strategy 4.6, and teaching effectiveness 4.4. Based on the participants’ evaluations and the ability to demonstrate all steps of the procedure we were able establish face validity of the model.

CONCLUSIONS: This demonstrates the ability to create models to teach complex endovascular skills. Although this provides a good model and curriculum it does not allow for performance assessment, as individual attendees were not given the opportunity to test their skills. The next step in this process is to evaluate individual performance of experienced interventionalists to establish construct and content validity.
P3. The Effect of Regionalization of AAA Repair to High Volume Hospitals: Financial and Outcomes Implications
Nicholas H. Osborne, MD, MS¹, Justin B. Dimick, MD, MPH¹, Gilbert R. Upchurch, Jr., MD²
¹University of Michigan, Ann Arbor, MI
²University of Virginia, Charlottesville, VA

OBJECTIVE: Regionalization has been proposed as a potential strategy to improve the outcomes of patients undergoing abdominal aortic aneurysm (AAA) repair. We sought to examine the implications of regionalization of AAA repair to highest volume hospitals using Medicare data between 1997 and 2007.

METHODS: All Medicare patients undergoing non-ruptured AAA repair between 1997 and 2007 were identified by ICD9 (n = 294,812). Hospitals were stratified by volume of aortic aneurysm repair and total Medicare payments into quintiles. Differences in mortality and Medicare payments (including DRG payments, outlier and readmission payments) were compared using bivariate and multivariate statistics.

RESULTS: Over the last decade, there has been relatively little redistribution of cases to highest volume hospitals. Previously documented trends confirmed that patients undergoing surgery in highest volume hospitals are 29% more likely to undergo an endovascular repair (RR 1.29, 95% CI 1.27–1.31). Accounting for differences in patient factors and endovascular repair, risk-adjusted mortality rates varied from 4.1% in the lowest volume hospitals to 3.1% in the highest volume hospitals (RR 1.27, 95% CI 1.08–1.49). When Medicare payments were examined across quintiles of hospital volume, the findings were surprising. Using 2005–2006 as a benchmark, median Medicare payments were slightly higher in the highest volume hospitals ($24,078 in lowest volume vs. $25,177 in highest volume, p < 0.001). These differences in payments across hospital volume quintiles were not due to differences in outlier payments (complications) or readmission rates, but were related to higher DRG payments to the highest volume hospitals. Thus, moving aortic surgery for all patients in 2006 to only highest volume hospitals would result in an excess of 29 million Medicare dollars spent and save 130 lives per year. Interestingly, lowest Medicare-payment facilities have a lower mortality than highest payment facilities (2.8% vs. 4.8%, RR 0.59, p < 0.001). These differences in mortality were not explained by differences in endovascular repair rates, patient co-morbidities, or hospital volume, but occurred because low Medicare-payment facilities have lower complications (lower readmission and outlier payments).

CONCLUSIONS: It appears that regionalization of AAA repair to highest volume hospitals would reduce mortality rates; however, this may increase healthcare expenditures by as much as 29 million dollars per year. Continued focus on preventing complications, rather than regionalization, appears to be a better strategy for reducing overall Medicare expenditures.
P4. **Aortic Mural Thrombus in the Normal or Minimally Atherosclerotic Aorta: A Systematic Review and Meta-Analysis of the Available Literature**

Ziad Fayad, MD, Elie Semaan, MD, Marcus D’Ayala, MD
New York Methodist Hospital, Brooklyn, NY

OBJECTIVES: Aortic mural thrombus in a nonaneurysmal, minimally atherosclerotic or normal aorta is a rare entity and an uncommon cause of arterial embolization. Both anticoagulation and aortic surgery are commonly used as primary treatment, but there is no consensus or clinical guidelines to outline the best management strategy. This systematic review compares the reported outcomes of these two management strategies.

METHODS: An extensive search of the literature was conducted and all relevant publications reviewed, with individual patient data pooled in this meta-analysis. Outcome variables included persistence or recurrence of aortic thrombus, recurrence of embolization, mortality, and a composite endpoint of stroke, limb loss, and bowel resection. Chi-square test and Logistic regression analysis were used to compare groups and to find any predictors of adverse outcome.

RESULTS: A total of 200 patients from 98 articles were enrolled (Anticoagulation N = 112, Surgery N = 88). Smoking was more prevalent in the surgery group, but no other differences in demographics, comorbidities, or mode of presentation was seen between groups. The surgery group was more likely to have thrombus located in the arch, but there were no differences in mobility or size of thrombus between groups. Aortic thrombus persisted or recurred in 26.4% of the anticoagulation group and in 5.7% of the surgery group (P < .001). Recurrence of arterial embolization was seen in 25.7% of the anticoagulation group and 9.1% of the surgery group (P = .003). Mortality rates were 6.2% and 5.7% for the two groups, respectively (P = .879). Complications occurred in 27% of the anticoagulation group and 17% of the surgery group (P = .07), and major limb amputation rates were 9% and 2% for the two groups, respectively (P = .004). Logistic regression analysis established thrombus location in the ascending aorta (OR 12.7 and 95% CI, 2.3 to 238.8) or arch (OR 18.3 and 95% CI, 2.6 to 376.7), mild atherosclerosis of the aorta (OR 2.5 and 95% CI, 1 to 6.4), and stroke presentation (OR 11.8 and 95% CI, 3.3 to 49.5) as important predictors of recurrence.

CONCLUSIONS: The results this meta-analysis seem to favor the surgical management of aortic mural thrombus in the normal or minimally diseased aorta. Anticoagulation as primary therapy is associated with a higher likelihood of recurrence and a higher incidence of limb loss.
P5. Delayed Abdominal Aortic Aneurysm Repair After Thoracic Aortic Aneurysm Surgery: What is the Risk of Paralysis?

Brant W. Ullery, MD, Grace J. Wang, MD, Edward Y. Woo, MD, Albert T. Cheung, MD, Michael L. McGarvey, MD, Jeffrey P. Carpenter, MD, Ronald M. Fairman, MD, Benjamin M. Jackson, MD
Hospital of the University of Pennsylvania, Philadelphia, PA

OBJECTIVE: To examine the results of open or endovascular abdominal aortic aneurysm (AAA) repair following prior open or endovascular thoracic aortic aneurysm (TAA) surgery.

METHODS: A retrospective review of a prospectively maintained database was performed in order to identify all patients who underwent open or endovascular AAA repair in a delayed fashion following prior open or endovascular TAA surgery at a single university hospital between 1999 and 2011. Patients requiring cardiopulmonary bypass for their abdominal aortic operation were excluded. Primary outcomes were mortality and spinal cord ischemia (SCI).

RESULTS: Thirteen patients were identified as having undergone AAA repair (open, n = 6; EVAR, n = 7) following prior TAA repair (open, n = 2; TEVAR, n = 11). Mean age at initial thoracic aortic operation was 68.9 ± 6.9 years, and 77% (n = 10) were male. Of the 11 patients who underwent TEVAR, 4 had extent C endovascular coverage (coverage of the entire descending thoracic aorta), and 4 patients had coverage of the left subclavian artery after prior left carotid-subclavian bypass. Three patients experienced transient delayed-onset SCI (paraplegia, n = 2; paraparesis, n = 1) following this initial thoracic aortic intervention; full recovery of neurologic deficits was evidenced in all three patients prior to discharge. The mean time interval between initial thoracic aortic surgery and subsequent AAA repair was 2.0 ± 1.8 years (range, 0.15–5.4 years). At the time of delayed AAA repair, 54% (n = 7) had prophylactic lumbar drainage and 46% (n = 6) had intraoperative somatosensory evoked potential monitoring. One patient who underwent EVAR had planned unilateral internal iliac artery coverage requiring coil embolization. Overall 30-day mortality was 0%. None of the patients demonstrated any neurologic deficits associated with SCI following their second aortic procedure. Kaplan-Meier survival at 1 year was 91% ± 9% with zero incidence of delayed SCI.

CONCLUSIONS: Delayed open or endovascular AAA repair following prior open or endovascular thoracic aortic surgery is technically feasible. This small series does not evidence any increased risk of perioperative mortality or SCI even in patients who had previously experienced transient SCI during prior thoracic aortic intervention. There is uncertain benefit to the routine use of prophylactic lumbar drainage in this unique patient cohort.
P6. Does ASA Classification Correlate with Outcomes Following Open and Endovascular Aortic Aneurysm Repairs?
Kuldeep Singh, MD, Danny Yakoub, MD, Jonathan Schor, MD, Charles Sticco, DO, Qinghua Pu, MD, Jonathan Deitch, MD
Staten Island University Hospital, Staten Island, NY

OBJECTIVES: Recently published reports have shown that the American Society of Anesthesiology (ASA) classification system has limited ability to act as clinical indicators and predict adverse events. We undertook this study to compare and evaluate the applicability of ASA to prognosticate post-operative morbidity and mortality following open and endovascular aneurysm repairs.

METHODS: We reviewed charts from January 1996 to September 2010 of all patients who underwent elective and urgent abdominal aneurysm procedures at SIUH were included for the study. Charts were reviewed, patient demographics, ASA classification and co-morbidities were recorded. Less than 30 days post operative mortality rates were analyzed along with postoperative complications.

RESULTS: A total 233 patients (146 EVAR and 77 open) were included in the study. All were preformed under general anesthesia. The average age was 74.7 years for EVAR group and 67.7 for open. Number of patients with ASA classes 1, 2, 3 and 4 were 0, 3, 86 and 50 respectively in the EVAR group and 0, 0, 33 and 44 in the open group. There was no significant difference noted in age or sex between the two groups. Comorbidities in the EVAR vs. the open group included cardiac history (53% vs. 62%) renal insufficiency (10% vs. 19%) COPD (29% vs. 22%). EBL was significantly lower in the EVAR group (0.8 liters vs. 1.8 liters). 30 day mortality for EVAR vs. open repair (0.007% vs. 2.0%). Postoperative complication rate was significantly lower in EVAR group compared to the open group (21% vs. 59%); renal insufficiency (8.2% vs. 21%), respiratory failure (0.5% vs. 24.6%), and cardiac complications (2% vs. 25%). In the open group mortality and morbidity strongly correlated to the ASA class with higher mortality in ASA class 4 than class 3 patients (34% vs. 9%, p = 0.006). With regards morbidity, in both the EVAR and the open groups, morbidity significantly increased with higher ASA class (EVAR group: 31% for ASA 3 and 56% for ASA 4, p < 0.05) and (open group: 33% for ASA 3 and 100% for ASA 4, p < 0.05).

CONCLUSIONS: ASA scores were predicative of outcomes in patients undergoing both open AAA repair and EVAR especially in patients with ASA 3 and more. Better perioperative risk assessment tool is needed for patients undergoing both open and EVAR.
P7. Long-Term Outcome of Femoralfemoral Bypass Grafting with Aortouniliac Endovascular Aneurysm Repair
David O’Connor, MD, Ageliki Vouyouka, MD, Scott Sundick, MD, Daniel Han, MD, Varinder Phangureh, MD, Marvin Weaver, MD, Sharif Ellozy, MD, Michael Marin, MD, Peter Faries, MD
Mount Sinai Medical Center, New York, NY

OBJECTIVES: Femoralfemoral bypass grafting in conjunction with aortouniliac endovascular aneurysm repair (AUI) is required for maintenance of contralateral limb perfusion. Acceptable patency rates have been established for occlusive disease, however few studies have examined outcomes after aortouniliac aneurysm repair.

METHODS: All patients undergoing aortouniliac endovascular aneurysm repair at a single institution from 2001 to 2005 were identified from a prospectively maintained database and retrospectively reviewed.

RESULTS: Over a 4 year period, 64 patients underwent AUI with an aortouniliac endovascular stent graft. Cumulative primary patency by life-table analysis at 1, 3, and 5 years was 96.5, 96, and 85% respectively. The mean follow-up 28.8 months (range 1–110 months). Two grafts were removed for infectious complications. There were no associated major amputations.

CONCLUSIONS: Acceptable primary patency results can be achieved with femoralfemoral bypass grafts with endovascular aortouniliac aneurysm repair over the intermediate and long-term periods in patients who require AUI for aneurysm repair.
TOPIC: CAROTID
Moderator: Fred A. Weaver, MD

P8. Early Outcomes of Blunt Thoracic Aortic Injury Over an 18-Year period: A Prospective Level 1 Trauma Center Experience
Rafael D. Malgor, MD, Thomas V. Billinger, MD, Jane McCormack, RN, Marc J. Shapiro, MD, Apostolos K. Tassiopoulos, MD
Stony Brook Medical Center, Stony Brook, NY

OBJECTIVES: To review the natural history of Blunt Aortic Thoracic Injury (BTAI) and its management over an 18-year period.

METHODS: Prospective data of 88 (0.3%) patients with a confirmed diagnosis of BTAI among 26,020 trauma patients from January 1993 to December 2010 were reviewed. Excluded were patients with penetrating aortic injury or those who were either younger than 18 or older than 80. Outcomes of interest were demographics, use of safety devices at the time of injury, type of repair (conservative, open repair (OR) or endovascular treatment (ET)) and the impact of concomitant injuries using the Injury Severity Score (ISS).

RESULTS: Sixty-three (72%) patients with BTAI were male and the median age was 38 ± 17. The most prevalent mechanism of trauma was motor vehicle collision in 65 (74%) patients, followed by motorcycle crash (13, 15%). Airbag deployment, use of seatbelt or both were found in 48% and helmet use in 69%. Sixteen patients with elevated ISS were pronounced dead in the emergency department after initial assessment (Mean ISS, 69 dead vs 39 alive; P < .0001). Graph 1 depicts a temporal distribution of cases coupled to age and ISS, and comparative data on type of repair are found in Table 1. The overall mortality of hospitalized patients with BTAI was 32%. Initial ISS was higher in the hospital mortalities compared to that of discharged patients (47 ± 19 in patients that died, versus 35 ± 14 in those alive; P < .001). Of those discharged from the hospital, 33 (67%) went to a rehabilitation center or were transferred to another hospital, and 16 (33%) went home.

Table 1: Management of BTAI Over an 18-Year Period

<table>
<thead>
<tr>
<th></th>
<th>Conservative N = 15</th>
<th>Endovascular Treatment N = 11</th>
<th>Open Repair N = 46</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median</td>
<td>38 ± 18</td>
<td>35 ± 16</td>
<td>38 ± 17</td>
<td>NS</td>
</tr>
<tr>
<td>Male</td>
<td>8 (53%)</td>
<td>8 (73%)</td>
<td>36 (78%)</td>
<td>NS</td>
</tr>
<tr>
<td>ISS, mean</td>
<td>43 ± 16</td>
<td>37 ± 16</td>
<td>38 ± 16</td>
<td>NS</td>
</tr>
<tr>
<td>Accident to ER, min</td>
<td>54</td>
<td>52</td>
<td>55</td>
<td>NS</td>
</tr>
<tr>
<td>ER to intervention, min</td>
<td>N/A</td>
<td>370</td>
<td>331</td>
<td>NS</td>
</tr>
<tr>
<td>Hospital length of stay, mean</td>
<td>113 ± 53</td>
<td>20 ± 9</td>
<td>36 ± 23</td>
<td><.001</td>
</tr>
<tr>
<td>Mortality, %</td>
<td>11 (73%)</td>
<td>0 (0%)</td>
<td>12 (26%)</td>
<td><.001</td>
</tr>
</tbody>
</table>
CONCLUSIONS: The incidence of BTAI in trauma admissions is low but has a significant impact on morbidity and mortality, with reduced length of hospital stay and lower mortality rates found in the ET group despite similar ISS. The majority of patients with BTAI who survived hospitalization had a lower ISS and were discharged to rehabilitation or another facility rather than home.
P9. Is SDH Gene Mutation Screening Usefull to Improve Surgical Outcomes in Patients with Neck Paragangliomas?
Michele Piazza, MD1, Federico Boschiero, MD1, Mirko Menegolo, MD2, Elena Molon, MD2, Michele Antonello, MD2, Joseph J. Ricotta, Jr., MD2, Franco Grego, MD2

1Clinic of Vascular and Endovascular Surgery, Padova University, School of Medicine, Italy,
2Vascular and Endovascular Surgery, Emory University, School of Medicine, GA

OBJECTIVES: To compare the outcomes in patients who underwent surgery for neck paragangliomas (NPs) before and after preoperative Succinate Deidrogenase (SDH) gene mutation analysis and genetic screening.

METHODS: Between 1995 and 2010, 36 consecutive patients underwent surgery. Two patients (5.5%) were excluded because of a post-operative histological diagnosis of schwannoma. Two groups were compared: Group A (1995–2003; n = 12/34, 35.29%) retrospectively evaluated for SDH gene mutation; Group B (2004–2010; n = 22/34, 64.7%) underwent preoperative genetic evaluation for SDH gene mutation and if positive the screening was extended to family members. Primary endpoints were: mass diameter, preoperative endovascular procedures (PEP), estimated blood loss (EBL), and cranial nerve injury (CNI). The secondary endpoint was to compare the number of new silent masses (NSM) discovered after genetic evaluation.

RESULTS: Overall, there was a higher incidence of females (n = 23/34, 68%), mean age of 49 ± 18 years, with no difference in demographics between groups A and B. The SDH mutation was found in 1 patient (8.3%) in Group A and 7 (31.8%) in Group B (p = .061). Of these, further evaluation led to the discovery of 4 NSM in Group B and 1 in Group A (18.2% vs 8.3%, p = .41). There was a significant increase in the number of small NP (Shamblin I or 5 cm) compared to Group A (7.7% vs 13.6%, p = .31). PEP was performed in 5 cases only in group B (22% vs 0%, p < .05). EBL was less in Group B (104 ± 286 ml vs 396 ± 554 ml, p = .043) as was incidence of postoperative CNI at 30 days (21.7%, vs 53.8% p = .02) compared to Group A. No surgical related strokes or deaths were reported, as no signs of recurrence during follow-up (mean 49 ± 11 months).

CONCLUSIONS: Even if larger number of patients are needed, preoperative genetic screening for SDH mutation together with new advanced technique in the treatment of NPs, has the potential to lead to earlier diagnosis and better surgical outcomes.
Daniel Copeland, MD, Sandi Brock, RN, William Stevenson, MS, Mohammed Moursi, MD
Central Arkansas Veterans Health System, Little Rock, AR

OBJECTIVES: Carotid Endarterectomy (CEA) and Carotid Artery Stenting are used in the treatment of extra-cranial carotid stenosis and stroke prevention. This study provides a contemporary cohort of CEA subjects for comparison.

METHODS: A retrospective review of primary carotid endarterectomies for symptomatic and asymptomatic stenosis was performed at a single Veterans Hospital from 2000–2010.

RESULTS: 577 veterans were studied. Median age was 67 years with 97% male. 57% were asymptomatic severe stenosis (99%) by ultrasound alone (97%). 98% percent were ambulatory and living independently. Of those who were symptomatic (247), 105 (43%) had ocular symptoms, 166 (67%) had a transient ischemic attack, and 115 (47%) had evidence of an embolic stroke. 79% were on Aspirin alone, 5% on Plavix alone, and 16% on both. Comorbidities included hypertension (83%), coronary artery disease (24%), CHF (11%), diabetes (38%), and peripheral vascular occlusive disease (28%). All surgeries were done under the direction of a single surgeon using a traditional CEA with bovine pericardial patch angioplasty of the internal carotid artery. Fifty-eight percent underwent
regional block and 42% general anesthesia. A shunt was utilized in general anesthesia cases and in 11% done under regional block. A vascular fellow was involved in 21% of the cases and a midlevel general surgery resident in 79%. Average operative time was 94 minutes. The average follow up was 50 months with an average length of stay at 3.9 days. The majority were discharged to home ambulatory with independent living status. Few patients were treated for wound infection (1.4%) and seventeen patients (3%) experienced transient nerve dysfunction (16 marginal mandibular, 1 hypoglossal), all resolving within a year. One patient had persistent jaw fatigue. One patient sustained an intraoperative stroke. The thirty-day, one year, and three year stroke rate was 0.87%, 1%, and 1.4% respectively. Two peri-operative strokes were major leading to severe dysfunction and early mortality. The rates for peri-operative myocardial infarction and death rates were both 0.17%. The mortality rate at one year (1.8%), three years (4.8%), and at follow up (12.2%) were also recorded.

CONCLUSIONS: CEA remains the gold standard for carotid revascularization with low perioperative events in experienced hands.

Jason K. Wagner, MS, Samuel N. Steerman, MD, Sadaf S. Ahanchi, MD, Jonathan A. Higgins, MD, Babatunde M. Almaroof, MD, Carolyn Mosely, CPA, Jean M. Panneton, MD
Eastern Virginia Medical School, Norfolk, VA

OBJECTIVES: The growing concern over healthcare cost and the implications of a transition towards bundled payments for surgical procedures has made cost analysis a necessity for health systems and providers alike. Identifying areas which improve the delivery of quality care and simultaneously limit cost are essential to maintaining a sustainable healthcare model.

Variability in operating room charges based solely on surgeon preference is an ideal target for cost containment measures. The goal was to identify the impact of preference-dependent utilization of surgical supplies on the intraoperative charges for carotid endarterectomy (CEA).

METHODS: A retrospective chart review was undertaken for patients who underwent CEA between January 2009 and August 2010 at a high-volume academic center. Data was collected from the electronic medical record and billing system and then categorized. The three categories with the highest degree of cost variability were identified and analyzed.

RESULTS: The records of 140 patients (32% female, 68% male) with an average age of 68.5 years (range 45–86) were reviewed. Preoperative symptomatology was known for 127 patients, of whom 32% (41) were symptomatic and 15% (19) of procedures were performed urgently. The average length of stay was 3 days (mode 1, range 1–20) and the average charge incurred during a CEA hospitalization was $29,459 (range $14,723-$128,328). The three areas that comprised the highest percentage of total hospital charges were operating room services (28%), ICU stay (12%), and surgical supplies (11%). Operating room (OR) times averaged 173 minutes (range 89–315) and charges averaged $6,663.35 (range $4,176.50–$10,843.50). After a base charge of $1,551.00, OR charges were $31.97/minute.

Within surgical supplies, the three units with largest cost variability were surgical trays, hemostatic agents and shunts, comprising 48%, 15% and 11% of the total operative supply charges respectively. Within surgical packs, the mean charge was $834/patient; however, the range was $339–$4853. Hemostatic agents were used in 83 of 140 cases, with a mean charge was $431 (range $107–$1531). Shunts were utilized in 60 of 140 cases mean charge $444, (range $96–$2493).

CONCLUSIONS: In addition to OR time, preference in the composition of surgical packs, shunt type and hemostatic agent used generate wide variability in the intra-operative charges of CEA. These categories with significant surgeon-dependent variability are potential targets for cost containment.
OBJECTIVES: Aortic dissection (AD) can be a catastrophic emergency. Stanford Type-A dissections are usually treated urgently. Indications for intervention Type-B were: end organ ischemia, rupture or lumen expansion. The objective of this study was to look at outcomes for AD in a contemporary vascular academic center.

METHODS: All patients with AD were included over an 11 year period from 2000–2011. Patients were divided into Stanford Type A or B.

RESULTS: Over an 11-year period, 98 patents presented with the diagnosis of AD. There were 34 Type-A and 64 Type-B. Out of 34, Type-A, thirty underwent urgent repair. Perioperative mortality was 56% and 12-month mortality was 64%.

For Type-B: 53 were acute and 11 were chronic or >2 weeks after the initial diagnosis. The mean age was 58.6 ± 16 where 45 (70%) were men. Total of 49 procedures were performed. Indications for surgery were refractory hypertension in 15%, limb ischemia in 13.3% visceral ischemia 24%, progression of dissection in 4.4%, rupture in 9% and enlargement in 29%. The time to surgical intervention was 2.1 (0–185) days. Two patients died from rupture before surgery. Procedure related or in-hospital mortality was 20% while 12-month mortality for the Type-B was 33%. Of the patients that survived 12-month, 37% were lost to follow up. Open repair was performed in 3 patients where two died during surgery. Most common procedure was a thoracic endograft 80% with covering of subclavian artery in all. Two patients had lower extremity ischemia and underwent a femorofemoral bypass. Six visceral revascularization were done with stents.

CONCLUSIONS: There is a clear advantage of endovascular approach in Type-B. However, AD remains a morbid disease with high mortality. Furthermore, a significant number of patients were lost to follow up. A new approach may be needed to address this issue.
OBJECTIVE: Carotid endarterectomy (CEA) is recognized as the gold standard surgical treatment for symptomatic and asymptomatic carotid lesions. Multiple published manuscripts have described the optimal technical and management details of the procedure, including non-surgical management, optimal drug regimens, best shunting techniques and intra-operative monitoring techniques. Many of the studies published have large numbers of patients, mostly pooled from multiple centers and surgeons. However, few papers report long term follow-up greater than 20-years; fewer report a single surgeon’s outcomes. This study reports a single practitioner’s 35-year experience with CEA.

METHODS: Retrospective analysis of prospectively collected data was evaluated from a single vascular surgeon’s database. Inclusion criteria: any patient who underwent a CEA and was closed either primarily or with a greater saphenous vein patch. Results pertaining to side, surgical approach, reoperation rate and reason, 60-day morbidity and mortality and long-term results were analyzed. Data was compared to multiple published reports of CEA both with and without the use of a vein patch.

RESULTS: After 35-years of operating a total of 1029 patients underwent 1173 CEs, right: 593 (50.55%), left: 580 (49.44%); 144 (13.9%) patients underwent bilateral CEA. A total of 953 (81.24%) greater saphenous vein patches were performed with 212 (18.01%) closed primarily, data was unavailable for 8 (.68%) repairs. Restenosis occurred in 16 (1.36%) patients (left-10 right-6, vein patch: 12, primary closure: 4) with an average stenosis of 99% before reoperation. 60-day post operative results for primary closure versus vein patch respectively were: ipsilateral stroke 1.7%/0.5%; mortality 2.2%/0.3% and any stroke related death 3.4%/0.76%. Over the 35-year analysis a total of 283 patients died of both post-operative and natural causes. Overall the morbidity of CEA with greater saphenous vein patch compared to primary closure was statistically significant, P < 0.01.

CONCLUSION: CEA is a time tested surgical treatment for symptomatic and asymptomatic carotid lesions. Closing the arteriotomy with a saphenous vein patch is safe, effective and stands the test of time. This study reports that a single practitioner’s long-term results are consistent with published record of larger trials. These comparative observations support the notion that CEA closed with a greater saphenous vein patch should be considered the gold standard of surgical treatment for carotid artery disease.
BACKGROUND: Vascular surgeons performing carotid stents and thoracic aorta endografts traverse the aortic arch and cannulate the great vessels routinely. Certain anatomic features render these diagnostic and therapeutic procedures more difficult.

PURPOSE: To review the anatomical arch types, and degree of calcification encountered in patients undergoing diagnostic and therapeutic arch aortograms (AA).

METHODS: The digital subtraction angiograms of all patients subjected to AA were retrospectively reviewed. Classification included bovine type (common origin for innominate and left common carotid), and types I, II and III for great vessel takeoff. Other anomalies were noted as well as the extent of calcification present. Types of catheters used for selective cannulation were noted, as well as procedure complications and outcomes.

RESULTS: We randomly selected 320 patients (140 women) out of 478 patients subjected to AA. The average age was 69.5 (range 22 to 94). There were 175 (54%) AA performed for diagnostic purposes. The large majority (280; 89%) was for cerebrovascular disease, 21 (6.5%) for thoracic aortic disease, 9 for subclavian or upper extremity ischemia, and 5 for visceral aortic disease. After excluding 71 patients with inadequate views, we found 61 (19%) patients with bovine arch. Only 50 (20%) had a type I arch, while 167 (39%) had type II a and b, and 103 (41%) had type III. Moderate calcification was noted in 35 (14%) and severe in 6 (2.4%). Severe calcification and stenosis precluded selective cannulation in 3 patients. Severe disabling stroke occurred in 3 (0.9%) patients.

CONCLUSIONS: Arch anatomy influences the choice of catheters and procedures performed in patients with carotid and aortic disease. We found a significant proportion of patients with difficult arch anatomy, particularly type III, complicating delivery of carotid stents and thoracic endografts.
OBJECTIVES: Chronic total occlusions of the lower extremity can cause symptoms from claudication to tissue loss. A significant reason for failure of transcatheter revascularization in patients with chronic total occlusion is the inability to re-enter the true lumen distally after transversing the lesion. Two devices have been approved for such re-entry—Outback® LTD® Re-Entry Catheter (OBK) that utilizes fluoroscopy (Cordis, Johnson and Johnson Company, Bridgewater, NJ), and the Pioneer® Catheter (PNR) which uses intravascular ultrasound (Medtronic, Minneapolis, MN). We aimed to examine our single center initial revascularization success and complication rates with these devices.

METHODS: Patients who underwent endovascular procedures for lower extremity chronic total occlusion between December 2002 and July 2010 with OBK (N = 36) or PNR (N = 41) were selected. Patient characteristics, demographics, lesion morphology, and complications were examined. Case-mix adjusted forward step-wise multiple regression models ascertained independent risks for initial success.

RESULTS: A true-lumen re-entry device was attempted in 77 limbs in 69 patients. There was no device related mortality in either group. Procedural complications were similar across groups. Surgeon selection was equally distributed within groups. Overall success rate of re-entry was 86%. OBK was successful in 75% [Aortoiliac: 10/13, Femoropopliteal: 17/23] and PNR was successful in 95% of limbs attempted [Aortoiliac: 33/34, Femoropopliteal: 6/7] (P = 0.012). TASC lesion classification was similar between groups, while level D lesions with heavy calcification were present in 67% of the OBK failures for re-entry. Revascularization with percutaneous balloon angioplasty was completed in 8.3% of OBK and 2.4% of PNR, while adjunctive stents were placed in 55.6% of OBK and 90.2% of PNR (P = 0.002, respectively). There were 11% periprocedural complications with OBK and 7% with PNR. Following risk-adjustment (Nagelkerke R² = 0.61), Pioneer® Catheter utilization independently predicted success [adjusted odds ratio 17.83, 95% confidence interval 1.094–290.404] compared to Outback® LTD® (area under receiver operating characteristic curve 0.85).
CONCLUSIONS: Both the Pioneer® and Outback® LTD® Catheters are highly successful in achieving true-lumen re-entry in lower extremity chronically occluded lesions with minimal complications. At our center, failure to revascularize a limb with the Outback catheter primarily occurred in the TASC D lesion with heavy calcification. Although selection bias for the Pioneer® Catheter may be contributory, use of the Pioneer® device provides independent putative benefit that requires further exploration.
OBJECTIVES: Single-segment saphenous vein remains the optimal conduit for infrainguinal revascularization. In its absence, prosthetic conduit may be used. Existing data regarding the significance of adjunctive distal vein cuff (DVC) usage with prosthetic grafts are based on small series.

METHODS: This is a retrospective cohort analysis derived from the regional Vascular Study Group of New England, 2003–2010. 1018 infrainguinal prosthetic bypass grafts were captured in the dataset from 73 surgeons at 15 participating institutions. Outcome measures of interest included: primary patency, freedom from major adverse limb events (MALE), and amputation free survival (AFS) at 1 year as a function of vein patch utilization.

RESULTS: Of the 1018 bypass operations, 94 (9.2%) had a DVC while 924 (90.8%) did not (no DVC). The DVC and no DVC group had many similar baseline comorbid characteristics (Table). Likewise, they had similar rates of preoperative independent living (93.6% vs. 95.7%, \(p = 0.43 \)) and independent ambulation (70.2% vs. 76.5%, \(p = 0.2 \)). A higher proportion of the DVC group had a CLI indication (73.4% vs. 60.3%, \(p = 0.01 \)), had a prior bypass (58.5% vs. 37.9%, \(p = 0.014 \)), were on hemodialysis (11.7% vs. 5.8%, \(p = 0.003 \)) or had a more distal target vessel (\(p < .0001 \)). The DVC group had a higher rate of completion angiogram performed (56.4% vs. 42.6%, \(p = 0.01 \)). At 1 year the DVC and no DVC groups had similar rates of primary patency, freedom from MALE and AFS (Table).

Table 1: Baseline Characteristics and 1-Year Outcomes for Prosthetic Infrainguinal Bypasses

<table>
<thead>
<tr>
<th></th>
<th>Distal Vein Cuff</th>
<th>No Distal Vein Cuff</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age [± Stddev]</td>
<td>70.5 [10.8]</td>
<td>68.8 [11.1]</td>
<td>0.17</td>
</tr>
<tr>
<td>% Male Gender</td>
<td>54.3</td>
<td>64.2</td>
<td>0.07</td>
</tr>
<tr>
<td>% Below-knee target</td>
<td>78.7</td>
<td>42.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>% Diabetes</td>
<td>58.5</td>
<td>48.8</td>
<td>0.08</td>
</tr>
<tr>
<td>% on Hemodialysis</td>
<td>11.7</td>
<td>5.8</td>
<td>0.003</td>
</tr>
<tr>
<td>% Critical Limb Ischemia Indication</td>
<td>73.4</td>
<td>60.3</td>
<td>0.01</td>
</tr>
<tr>
<td>Primary Patency at 1 year</td>
<td>71.3 ± 5.7</td>
<td>71.1 ± 2.0</td>
<td>0.73</td>
</tr>
<tr>
<td>Freedom from MALE</td>
<td>80.4 ± 4.8</td>
<td>79.9 ± 1.8</td>
<td>0.45</td>
</tr>
<tr>
<td>Amputation free Survival</td>
<td>60.0 ± 6.7</td>
<td>71.8 ± 2.6</td>
<td>0.067</td>
</tr>
</tbody>
</table>
CONCLUSIONS: This contemporary multi-institutional study demonstrates that patients that receive distal anastomotic vein cuffs as part of infrainguinal prosthetic bypass operations in general have higher risk comorbidities and more technically challenging operations based on level of target vessel and prior bypass attempts. The use of a DVC may improve outcomes for disadvantaged grafts to a level similar to that for grafts with more favorable features.
P17. Percutaneous Iliac Angioplasty and Stenting in Patients on Hemodialysis: Are the Outcomes that Poor?

Mitul S. Patel, MD, Javier E. Anaya-Ayala, MD, Charu Bavare, MD, Christopher J. Smolock, MD, Jean Bismuth, MD, Joseph J. Naoum, MD, Hossam El-Sayed, MD, Eric K. Peden, MD, Alan B. Lumsden, MD, Mark G. Davies, MD, PhD
The Methodist Hospital, Houston, TX

BACKGROUND: Endovascular therapy for symptomatic atherosclerotic iliac artery stenosis is common place, but its outcomes in special populations is poorly described. This study evaluates the outcomes of percutaneous iliac therapy in patients on hemodialysis at a national academic medical center.

METHODS: We performed a retrospective analysis of records from patients who underwent endovascular intervention for symptomatic atherosclerotic iliac artery stenosis and were followed by duplex ultrasound between January 1990 and June 2011. Clinical efficacy was defined as the absence of recurrent symptoms, maintenance of ambulation and limb preservation in the index limb.

RESULTS: 324 patients underwent iliac artery interventions: 35 were on HD while the remainder were not (non HD). The 59 percutaneous interventions were performed in the HD patients (60% male, average age 63 yrs, range 43–86). 97% had hypertension, 74% had hyperlipidemia, 40 had metabolic syndrome and 71% were considered diabetic. 29% of these presented with Rest Pain/Tissue loss. 17% of lesions and 6 procedures were to improve inflow for an infra-inguinal procedure, compared to 13% in non-HD patients. There was a 1% technical failure rate. Comparisons of demographics, presenting symptoms and outcomes between the non HD and HD patients are shown in Table 1.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Non HD</th>
<th>HD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (% male)</td>
<td>61</td>
<td>68</td>
<td>NS</td>
</tr>
<tr>
<td>Age (mean ± SD years)</td>
<td>65 ± 12</td>
<td>62 ± 11</td>
<td>NS</td>
</tr>
<tr>
<td>30-day Mortality (%)</td>
<td><1</td>
<td><1</td>
<td>NS</td>
</tr>
<tr>
<td>Morbidity (%)</td>
<td>4</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>Major Adverse Limb Event (MALE %)</td>
<td>7</td>
<td>26</td>
<td>0.002</td>
</tr>
<tr>
<td>Amputation-Free Survival (%)*</td>
<td>73 ± 6</td>
<td>34 ± 7</td>
<td>0.002</td>
</tr>
<tr>
<td>Clinical Efficacy (%)*</td>
<td>87 ± 2</td>
<td>74 ± 5</td>
<td>0.05</td>
</tr>
</tbody>
</table>

*p at five years

By Cox proportional hazards amputation-free survival and clinical efficacy are worse in HD patients that are diabetic, continue to smoke, or present with tissue loss.
CONCLUSION: Percutaneous intervention of the iliac artery on dialysis patients is associated with a high morbidity and MALE rate compared to non-HD patients. While intervention success rates are equivalent, clinical efficacy and amputation-free survival are significantly worse in HD patients.
OBJECTIVE: The incidence of hospitalization for diabetes and related wounds increases yearly in the United States. Amputation remains a significant complication of these wounds. With aggressive medical and interventional therapies including endovascular procedures for treating chronic vascular disease in diabetic patients, we hypothesize the rate of lower extremity amputations should be declining. The purpose of this study was to analyze national trends in utilization of various treatment modalities for diabetic ulcers and compare related costs.

METHODS: A retrospective analysis of the Nationwide Inpatient Sample (NIS) from 2001 to 2008 was performed. ICD-9 codes were used to identify all diagnoses of diabetic related lower extremity ulcers and surgical procedures used. Using a coding algorithm to identify patients who underwent surgical intervention (amputation, open peripheral bypass, diagnostic angiography, PTA) during admission, national trends were calculated and chronicled.

RESULTS: A total of 5,727,764 patients were identified with admitting diagnosis of diabetic lower extremity ulcer during the study period. Mean age was 66.42 (SEM 0.007), 51.2% were males, 49.2% were white, and 66.3% had Medicare coverage. Utilization of open peripheral bypass procedures decreased from 3.9% in 2001 to 2.1% in 2008 (p < 0.001). The percentage of patients undergoing angioplasty after diagnostic angiogram increased more than 2-fold, from 20.4% in 2001 to 42.7% in 2008 (p < 0.001). Amputation (includes toe, foot, below and
above knee) rate remained relatively stable at 11.3%. Comparing amputation to angioplasty, mean total hospital charge was significantly lower with amputation ($53,962.94 versus $74,664.97, p < 0.001). Mean length of stay was also significantly shorter for angioplasty (10.81 days versus 12.81 days, p < 0.001).

CONCLUSIONS: During the study period, there was significant decrease in peripheral open bypass procedures for patients with diabetic ulcers. The percentage of patients undergoing amputation remained relatively constant despite a corresponding increase in utilization of angioplasty with diagnostic angiography. Although mean length of stay was shorter for angioplasty, there was a significant increase in total hospital charge for these patients. Further studies are needed to determine the role of angioplasty in the ongoing effort to control costs in caring for diabetic patients in the era of shrinking healthcare economic resources.
P19. Thrombosis of the Popliteal Artery from Entrapment Syndrome—A Subgroup with Worse Outcomes
Wesley K. Lew, MD, Russell Cohen Hoffing, Ali Alktaifi, MD, Peter F. Lawrence, MD
UCLA, Los Angeles, CA

OBJECTIVES: Popliteal artery entrapment syndrome (PAES) is a low-frequency disease that causes leg ischemia as well as vein and nerve compression. Operative management consists of releasing the constricting muscle or tendons and reconstructing the popliteal artery, when symptomatic. We have identified a subgroup of patients presenting with occlusion of the popliteal artery secondary to PAES, who have worse long term outcomes than those without popliteal artery occlusion.

METHODS: We reviewed our database of patients surgically treated for PAES.

RESULTS: Between 2000 and 2010, 9 patients (3 female, 6 male, median age; 32) were identified with PAES. All patients presented with intermittent claudication alone. Preoperative workup included duplex ultrasound (n = 6, 67%), MRI (n = 5, 56%), MRA (n = 6, 67%), CTA (n = 2, 22%), and catheter angiogram (n = 8, 89%).

Seventy-eight percent (7/9) of patients had a thrombosed popliteal artery identified during the initial evaluation. Four underwent preoperative intervention with thrombolysis and stenting; only two were recanalized. At the time of surgery, five patients had thrombosed popliteal arteries; a posterior approach to the popliteal artery was used in 8/9 to allow for a myotomy, with or without arterial reconstruction; one patient had a bypass through a medial incision. Arterial reconstructions included interposition vein grafts (n = 4), of which two occluded postoperatively requiring thrombolysis, but remain patent, and one prosthetic bypass which thrombosed and was unable to be salvaged.

The average follow up has been 26.5 + 23.4 months with a 0% amputation rate and a 100% survival. When comparing patients with thrombosed (n = 5) versus patent (n = 4) popliteal arteries at the time of operation, preoperative intervention rates were 40% versus 25%, arterial reconstructions were required in 100% versus 25%, primary patency of the popliteal artery or reconstruction were 40% versus 100%, secondary patency rates were 80% versus 100%, and secondary intervention rates were 60% versus 0%, respectively.

CONCLUSION: Patients with PAES who require reconstruction of a thrombosed popliteal artery require more secondary interventions than those without occlusion, possibly due to intimal damage of the artery from thrombus. Early surveillance after repair of a thrombosed popliteal artery is recommended. A multi-institutional study is underway to better define treatment options for these patients.
P20. Penetrating Iliac Ulcers
Tanya R. Flohr, MD, Klaus Hagspiel, MD, Margaret C. Tracci, MD, JD, John A. Kern, MD, Irving L. Kron, MD, Kenneth J. Cherry, MD, Patrick T. Norton, MD, Gilbert R. Upchurch, Jr., MD
University of Virginia, Charlottesville, VA

OBJECTIVES: This review assesses the characteristics of penetrating iliac ulcers (PIU), as well as, the morbidity and mortality associated with them.

METHODS: From October 2010 to August 2011, 157 patients were identified as having a penetrating ulcer on CT angiogram of the chest, abdomen or pelvis. A total of 32 patients with 36 PIUs were identified. Medical records were reviewed for patient demographics, comorbidities, medications, and tobacco use. CT angiograms were reviewed by two licensed radiologists. Student’s t test was used to compare ages between genders and for PIU occurring in various locations.

RESULTS: PIU represented 20% of the penetrating ulcers identified during the study period, including ascending, arch, descending thoracic, infrarenal, iliac and femoral. Of the 32 patients with PIU identified, 27 (84%) were male and the average age was 71.93 ± 10.43 years. There was no difference in age between genders (p = 0.44). Follow-up over a period ranging from 1 month to 4 years with repeat CT angiograms was performed for 15 (47%) patients. All PIU were essentially unchanged with repeat imaging. Survival during the follow-up period was 97%. Twelve (38%) patients with PIU had multiple penetrating ulcers including 9 (28%) patients with infrarenal penetrating aortic ulcers. Twenty three (72%) patients with PIUs were current or former smokers. The most common associated comorbidities in patients with PIU were hypertension (75%), hyperlipidemia (66%) and aneurysmal disease (56%). The location of all PIUs are included below. (Figure 1.) No difference in age was noted for right versus left and common versus distal (p = 0.27 and 0.91, respectively). More than 60% of PIUs
identified were adjacent to the IVC and iliac veins, including those PIUs found along the common iliac arteries (CIA), specifically right posterior lateral, right medial and left lateral CIA.

CONCLUSIONS: PIUs account for a moderate percentage of all penetrating ulcers identified and yet their characteristics and natural history are not well described. These data suggest that while they commonly occur in hypertensive males, PIUs are relatively benign. Further characterization needs to be performed before recommendations for repair can be given.
P21. Drug Eluting Stents for Below Knee Revascularization in High-Risk Patients with Critical Limb Ischemia
Sharvil U. Sheth, MD1, Gregory T. Simonian, MD2, Massimo M. Napolitano, MD2, Michael J. Wilderman, MD2
1University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ,
2Hackensack University Medical Center, Hackensack, NJ

OBJECTIVE: To evaluate the role of drug eluting stents in below knee revascularization in patients with critical limb ischemia who are deemed high risk candidates for an open revascularization procedure.

METHODS: We retrospectively reviewed 13 consecutive high-risk patients (15 limbs) who underwent drug eluting stent placement over a period of 18 months. Standard percutaneous techniques were used for stent placement. Outcomes were measured in terms of patency, limb salvage and relief of symptoms.

RESULTS: Patient characteristics were as shown below in Table 1. 10 of 13 patients were deemed very high risk for open revascularization due to debilitating medical conditions. 3 of 13 had a threatened distal bypass and were at higher risk due to difficult anatomy. The lesions included 3 below knee popliteal, 4 tibioperoneal trunk, 2 anterior tibial, 3 peroneal, 1 posterior tibial and 3 below knee distal bypass stenosis. Simultaneous proximal interventions were performed during 26.6% of the procedures. Mean follow up was 111 days (14–329 days). Pain relief was observed in 83.3%. Limb survival rate was 85.7%. The primary patency rate was 86.2% and secondary patency rate was 93.1%. Two patients had minor complications (one groin hematoma and one puncture site pseudo aneurysm).

Table 1. Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>79.6 ± 10.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>79.6 ± 10.8</td>
</tr>
<tr>
<td>Sex (M:F)</td>
<td>9:4</td>
</tr>
<tr>
<td>Hypertension</td>
<td>92.3%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>53.85%</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>69.2%</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>38.4%</td>
</tr>
<tr>
<td>Chronic renal insufficiency</td>
<td>46.1%</td>
</tr>
<tr>
<td>Smoking</td>
<td>61.5%</td>
</tr>
<tr>
<td>ASA Class</td>
<td>3.3 ± 0.6</td>
</tr>
<tr>
<td>Rutherford Category</td>
<td>4.6 ± 0.8</td>
</tr>
</tbody>
</table>
CONCLUSIONS: Use of below the knee drug eluting stents is a safe and effective method for treatment of critical limb ischemia in high-risk surgical patients. Short term follow up demonstrates favorable clinical outcomes. Further studies to determine medium and long term outcomes are warranted.
Andrew J. Meltzer, MD, Ashley R. Graham, MD, Francesco A. Aiello, MD, John Karwowski, MD, Darren B. Schneider, MD
New York-Presbyterian Hospital, New York, NY

OBJECTIVES: Despite acceptance of endovascular intervention for peripheral arterial disease, common femoral endarterectomy (CFE) remains the preferred treatment for atherosclerotic disease of the common femoral artery (CFA). The objectives of this study are to delineate the safety of this open procedure in the endovascular era, establish contemporary benchmarks for morbidity and mortality after CFE, and identify patients at increased risk for post-operative adverse events.

METHODS: Patients undergoing elective CFE in the 2006–2008 National Surgical Quality Improvement Project dataset were randomly assigned to a model derivation sample (80%) or validation sample (20%). Univariate analyses were used to identify factors associated with major morbidity and mortality. Significant (P < .05) variables by univariate analysis were used to create binomial multivariate logistic regression models for morbidity and mortality. Models were internally tested for goodness-of-fit and validated on a distinct sample.

RESULTS: 988 patients underwent elective CFE. The 30-day mortality rate was 1.6%. Major post-operative morbidities included cardiac (0.9%), pulmonary (2.1%), renal (0.4%), thromboembolic (0.5%), neurologic (0.5%), sepsis (2.2%), and major wound complications (2.8%). 78 patients (7.9%) experienced at least one major complication. By univariate analysis, 8 of 31 preoperative variables tested were associated with mortality, including dyspnea, heart failure (HF), angina, dependent functional status (DFS), and critical limb ischemia (CLI) with open wounds. Variables associated with major morbidity included diabetes (DM), HF, DFS, angina, open wound, and steroid use. By multivariate analysis, DFS was the only independent predictor of mortality (P < .0001, OR: 19.8 [95% C.I. 3.4–99.7]). Independent predictors of morbidity included DFS (P = .018, 2.4 [1.17–5.27]), steroid use (P = .024, 2.90 [1.143–7.37]), and DM (P = .025, 1.958 [1.089–3.523]). In the validation sample, mortality was 10.7% among those with DFS vs. 0% in those with independent functional status (P = 0.002), and major morbidity was significantly more common among those with DFS (25% vs. 3.9%, P = 0.001). ROC curve area under the curve (AUC) analysis further delineated the predictive power of these models for mortality (P < .0001, AUC: .885) and major morbidity (P = .039, AUC: .67).
CONCLUSIONS: CFE is well tolerated. Results affirm the safety of CFE in the overwhelming majority of patients, and suggest that endovascular CFA intervention is infrequently warranted. Endovascular CFA interventions must not only be compared to the proven durability of CFE, but also to the established safety of this open procedure.
BACKGROUND: Controlling lipids, particularly cholesterol and LDL, is an accepted pre-requisite in the effective management of the atherosclerotic patient. Many patients present for superficial femoral artery (SFA) intervention on statins but it is unclear if this therapy has achieved its primary goal of a reduction in total cholesterol (less than 200 mg/dl) and a reduction in LDL (less than 100 mg/dl). The aim of this study is to determine the impact of effective statin therapy on patient and procedural outcomes following SFA interventions in patients with claudication.

METHODS: A database of patients undergoing endovascular treatment of the SFA for claudication between 1999 and 2011 was retrospectively queried. The analysis examined patients on statins and not on statins (No Statin) at the time of intervention and the statin group was subdivided into those with cholesterol and LDL patterns which were not (partly (Partial)) or completely (Total) controlled under current national guidelines. The primary comparison was between those receiving statins or not and the secondary analysis determined the impact of the effective statin therapy on outcomes. Kaplan-Meier survival analyses were performed to assess time-dependent outcomes.

Table

<table>
<thead>
<tr>
<th>Statin Therapy</th>
<th>Statin Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Male Gender (%)</td>
<td>33.5 34.5</td>
</tr>
<tr>
<td>Lee’s revised Cardiac Risk Index</td>
<td>2.6 ± 1.4 2.9 ± 1.7</td>
</tr>
<tr>
<td>30-day Mortality (n)</td>
<td>1 3</td>
</tr>
<tr>
<td>30-day Morbidity (%)</td>
<td>8.9 6.9</td>
</tr>
<tr>
<td>MACE (%)</td>
<td>4 5</td>
</tr>
<tr>
<td>MALE (%)</td>
<td>5 14</td>
</tr>
<tr>
<td>Survival (%)</td>
<td>83* 70*</td>
</tr>
<tr>
<td>Amputation free Survival (%)</td>
<td>72 83</td>
</tr>
<tr>
<td>Primary Patency (%)</td>
<td>73 56</td>
</tr>
<tr>
<td>5-yr Assisted Primary Patency (%)</td>
<td>79 81</td>
</tr>
<tr>
<td>5-yr Secondary Patency (%)</td>
<td>80 80</td>
</tr>
<tr>
<td>5-yr Clinical Efficacy</td>
<td>63 64</td>
</tr>
</tbody>
</table>

* p value (< 0.05)
RESULTS: 573 patients (68% male, average age 67 years) underwent endovascular treatment for symptomatic SFA disease. 52% were on statins at time of the procedure. Of those on statins 93% had an acceptable cholesterol, 5% had an acceptable LDL and 5% had both. Patients on statins presented with a greater number of TASC-II C and D type lesions (21.3%) than patients not on statins (11.3%).

CONCLUSIONS: There is a low penetrance of statin administration among patients with claudication. The effectiveness of anti-lipid therapy is poor. Patients on statins have a higher cardiac risk and a greater burden of disease as determined by TASC-II guidelines. The presence of statin therapy has a favorable effect on peri-operative outcomes and long term clinical efficacy, but seems not to improve over-all survival and limb complications.
OBJECTIVE: Recreational cocaine use has been credibly linked to many health hazards, including acute coronary syndrome, cardiac arrhythmia, hypertensive crisis, stroke, intestinal ischemia, and sudden death. Several reports have documented presumed cocaine-induced arterial thrombosis of the coronary or cerebral vasculature, but rarely has this phenomenon been established in the periphery. This study aims to review our experience with cocaine-induced peripheral arterial thrombosis requiring operative thrombectomy.

METHODS: A retrospective chart review was performed of patients undergoing emergency lower extremity thrombectomy from August 1995 to January 2011. Patients treated for arterial trauma, acute thrombosis of revascularization grafts, acute thrombosis of chronic peripheral arterial disease, or by thrombolytic therapy were excluded from this study. Records were reviewed to obtain patient demographics, co-morbidities, risk factors for atherosclerotic disease, results of urine toxicology screen, operative details, hospital course, and peri-operative outcomes.

RESULTS: Over the 15-year study period, 123 patients underwent emergency surgical thrombectomy at our institution. Eleven patients (8.9%) had cocaine-positive urine toxicology screens, confirming cocaine use within 72 hours of presentation. In comparison to non-cocaine users, cocaine-positive patients were significantly younger (43.0 ± 9.9 vs. 57.5 ± 13.5 years, P < .001) and were less likely to have more than one risk factor for atherosclerotic vascular disease (45.4% vs. 74.1%, P = .07). Thrombus was removed from cocaine-negative patients at the aortoiliac (n = 57, 51%), femoropopliteal (n = 65, 58%), and tibioperoneal (n = 14, 12%) region, whereas all cocaine-positive patients required femoropopliteal thrombectomy (n = 11, P = .002). Major (above-knee or below-knee) amputation rate was not significantly different among cocaine users (n = 2, 18.2%) and presumed non-cocaine users (n = 30, 26.8%). Outcome measures including peri-operative myocardial infarction, stroke, death, and hospital length of stay were not significantly different between the groups. Mean follow-up was 7.8 years (range, 0.8–16.1 years).

CONCLUSION: This study further substantiates the association between cocaine use and acute peripheral arterial thrombosis, and specifically localizes clot formation at the femoropopliteal level. Clinical suspicion for cocaine induced acute arterial thrombosis should remain high in young patients presenting with lower extremity ischemia to expedite an appropriate treatment strategy. Surgical thrombectomy continues to be a suitable option for intervention in these patients.

David E. Timaran, MD, Eric B. Rosero, MD, Adriana J. Higuera, MD, R. James Valentine, MD, Carlos H. Timaran, MD
University of Texas Southwestern Medical Center, Dallas, TX

OBJECTIVE: The proliferation of endovascular procedures and changes in payment arrangements have increased the number of vascular procedures performed on an ambulatory basis. The purpose of this study was to evaluate the use and outcomes of ambulatory vascular surgery among patients with lower extremity (LE) ischemia in the United States (U.S.).

METHODS: The National Survey of Ambulatory Surgery, a nationally representative database on ambulatory surgery procedures in the U.S., was used to identify vascular procedures performed for patients with LE ischemia in 2006. Logistic regression and general linear models were used to assess the association between patient characteristics, type of procedures and adverse outcomes.

RESULTS: The estimated number of ambulatory procedures for LE ischemia was 333,842. Only 9,684 (2.9%) patients underwent vascular procedures for limb-threatening ischemia (LTI). Angiography was performed in 69.4% of patients. Most procedures (54.6%) were exclusively diagnostic, whereas 6% involved open and 36.8% endovascular revascularization, respectively. Postoperatively, 3.7% of patients reported adverse events, 3.2% were admitted to a hospital and 2.5% were discharged to observation status. Mean procedural time (in minutes) was significantly increased in women (50.5 ± 36.2 vs. 31.8 ± 36.5), procedures under general anesthesia (64.4 ± 45.8 vs. 40.5 ± 31.1), patients with LTI (80.4 ± 16.5 vs. 45.6 ± 36.6), endovascular procedures (60.9 ± 42 vs. 36.9 ± 29.1) and high-risk patients (49.4 ± 29.2 vs. 44.5 ± 29.2) (all \(P < .001 \)). Multivariate logistic regression identified female gender, LTI, high surgical risk, use of general anesthesia, endovascular procedures, and procedural time as independent predictors of complications and increased odds of hospital admission.

CONCLUSIONS: Ambulatory vascular surgery is performed safely and with minimal periprocedural morbidity and hospital admission rates. Approximately half of the ambulatory vascular procedures involve exclusively diagnostic angiography, whereas more than one third include endovascular revascularization. Female gender, LTI, high surgical risk, general anesthesia and endovascular procedures are associated with an increased risk of complications, hospital admissions and procedural times.

Castigliano M. Bhamidipati, DO, MSc, Amani D. Politano, MD, MS, Margaret C. Tracci, MD, JD, Kenneth J. Cherry, MD, FACS, John A. Kern, MD, FACS, Irving L. Kron, MD, FACS, Gilbert R. Upchurch, Jr., MD, FACS
University of Virginia School of Medicine, Charlottesville, VA

OBJECTIVES: While it is anticipated that decubitus ulcers (DU) are detrimental to outcomes following vascular operations, the contemporary influence of preoperative DU in vascular surgery remains unknown. We examine this relationship to identify potential improvements towards better resource utilization.

METHODS: Using voluntary inpatient data from 2009, all adult patients who underwent either open or endovascular carotid repair, abdominal aortic aneurysm (AAA) repair, femoral artery to distal vessel revascularization, peripheral arterial stenting (PAS) or an above/below knee amputation were selected. Patients were stratified by the presence or absence (non-DU) of decubitus ulcer. Case-mix adjusted hierarchical models examined in-hospital mortality, any complication and discharge disposition.

RESULTS: A total of 538,808 cases were analyzed. DU was most prevalent among Caucasian male Medicare beneficiaries ($P < 0.001$). Patients with DU were more likely to be admitted on a weekend and with Stage IV ulcerations ($P < 0.001$, respectively). DU patients underwent more non-elective surgery ($P < 0.001$). Wound, infectious, and procedural complications were more common in DU ($P < 0.001$, respectively). Failure to rescue, defined as mortality following any complication, was more than doubled in DU (non-DU: 1.5%, DU: 3.2%, $P < 0.001$). Similarly, unadjusted mortality was also doubled with DU (non-DU: 3%, DU: 6%, $P < 0.001$). Following risk adjustment among all patients, neither presence of DU nor specific ulcer staging increased the adjusted odds of death. In DU patients, no specific vascular operation, body mass index threshold, or ulcer staging increased the adjusted odds of death. However, open and endovascular AAA repair, and PAS increased the adjusted odds of any complication ($P < 0.05$, respectively). Having a DU increased the adjusted odds of discharge to an intermediate care facility by almost 3 fold (AOR 2.9, 95% CI [2.7–3.4], $P < 0.001$). Additionally, when patients with DU were admitted from non-health care centers for elective surgery, they were 12 times more likely to go to a skilled nursing facility at discharge (AOR 12.04, 95% CI [7.1–20.3], $P < 0.001$). These patients also had 1.6 times the total charges compared to their non-DU cohort (non-DU: $49,460 ± 281$, DU: $81,149 ± 5855$, $P < 0.001$).
CONCLUSIONS: Contrary to common perception, preoperative decubitus ulcer does not adversely affect mortality following vascular surgery. However, patients with decubitus ulcers are at higher risk for complications and incur sizeable additional charges. Care costs, complications, and discharge disposition must be appropriately weighed in at-risk patients during operative planning.
P27. The Deleterious Effects of Renal Disease on Diabetic Patients Undergoing Infrainguinal Interventions

Rami O. Tadros, MD, Ageliki G. Vouyouka, MD, Andrew Tye, BS, Leon D. Boudourakis, MD, Constantinos T. Spyris, BA, Victoria J. Teodorescu, MD, Sharif H. Ellozy, MD, Michael L. Marin, MD, Peter L. Faries, MD

The Mount Sinai School of Medicine, New York, NY

OBJECTIVES: This study assesses the effects of chronic renal insufficiency (CRI) and end stage renal disease (ESRD) on diabetics undergoing percutaneous infrainguinal interventions.

METHODS: Diabetics requiring infrainguinal interventions were studied retrospectively. Outcomes were compared between those with normal renal function, CRI and ESRD. Statistical analysis included chi-square, Student’s t-test, ANOVA and Kaplan-Meier.

RESULTS: Ninety-five diabetics were analyzed (28 with CRI and 18 with ESRD). Mean follow-up of 8 months (range, 0–40). There were no differences in the index procedures performed or peri-procedural complication rates between groups. Compared to patients with normal renal function, diabetics with CRI or

![Graphs showing length of stay and limb salvage](image)

![Graph showing survival](image)

ESRD had increased length of stay (P < 0.01), reduced limb salvage (P = 0.02), and poor survival (P = 0.05).

Mean follow-up of 8 months (range, 0–40). There were no differences in the index procedures performed or peri-procedural complication rates between groups. Compared to patients with normal renal function, diabetics with CRI or ESRD had increased length of stay (P < 0.01), reduced limb salvage (P = 0.02), and poor survival (P = 0.05).
ESRD were more likely to be hypertensive (98% vs. 82%, p < 0.01), have isolated tibial disease (18% vs. 7%, p = 0.05) and present with tissue loss (67% vs. 43%, p < 0.01). Patients with CRI or ESRD had more returns to the operating room (15% vs. 2%, p < 0.01). However, overall patency rates did not differ. Renal disease was associated with a step-wise increased length of stay (LOS, p < 0.01, fig. 1), inferior limb salvage (p = 0.02, fig. 2) and worse survival (p = 0.05, fig. 3).

CONCLUSIONS: Diabetics with CRI or ESRD compared to those with normal renal function or CRI presented at an earlier age (63.9 vs. 72.1 years, p < 0.01).
OBJECTIVE: To examine trends in renal artery (RA) percutaneous balloon angioplasty and stenting (PTAS) in the South.

METHODS: Hospital discharge data from the Nationwide Inpatient Sample (NIS) were used to examine the rate of percutaneous intervention of renal arteries in the South region for the years 2001–2005. The NIS is the largest all-payer inpatient care database in the United States that samples approximately 20% of hospitalized patients across the country and can be analyzed regionally. The database includes ICD-9 CM codes for procedures and diagnoses during hospitalizations. These codes were used to estimate trends in RA-PTAS. PTAS was classified as either therapeutic or prophylactic based on the presence or absence of hypertension and/or renal insufficiency. Associations across years were evaluated using logistic regression. All analyses employed methods appropriate for complex survey data.

RESULTS: During the five year study period, over 100,000 patients underwent RA-PTAS in the South. This group consisted of 51.3 percent female, 31.6 percent non-white, with a mean age of 65.1 years. The annual estimated rate of RA-PTAS (see Table 1) ranged between 28,385 (2001) and 34,382 (2004), and represented 0.20–0.23 percent of all hospitalizations (p = 0.33). Overall, from 2001 to 2005, there was a significant decrease in the proportion of prophylactic PTAS (from 26.5% in 2001 to 22.4% in 2005; P = 0.03). Compared to 2001, the proportion of prophylactic PTAS, compared with therapeutic PTAS, decreased significantly in 2004 (OR = 0.84; 95% CI: 0.73–0.96; P = 0.01) and in 2005 (OR = 0.80; 95% CI: 0.67–0.96; P = 0.02).

Table 1. Annual Number of RA-PTAS Procedures in the South

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Procedures</th>
<th>Therapeutic Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall Number</td>
<td>Percent of Hospitalizations</td>
</tr>
<tr>
<td></td>
<td>of RA-PTAS</td>
<td>(SE)</td>
</tr>
<tr>
<td>2001</td>
<td>28,385 (2,133)</td>
<td>0.20 (0.01)</td>
</tr>
<tr>
<td>2002</td>
<td>31,570 (2,502)</td>
<td>0.22 (0.02)</td>
</tr>
<tr>
<td>2003</td>
<td>30,471 (2,133)</td>
<td>0.21 (0.01)</td>
</tr>
<tr>
<td>2004</td>
<td>34,382 (2,345)</td>
<td>0.23 (0.01)</td>
</tr>
<tr>
<td>2005</td>
<td>30,457 (2,484)</td>
<td>0.20 (0.01)</td>
</tr>
</tbody>
</table>
CONCLUSIONS: Over a recent 5 year period, estimates of RA-PTAS performed annually in the South ranged from 28,385 to 34,382 procedures. Approximately one-fourth of these procedures appear to be prophylactic, performed in the absence of hypertension and/or renal dysfunction. The proportion of prophylactic procedures decreased during this study period.
P29. Differential Outcomes of Autologous and Prosthetic Lower Extremity Arteriovenous Access for Hemodialysis

Javier E. Anaya-Ayala, MD, Monider M. Singh, BS, Shobha Nizami, BS, Charudatta S. Bavare, MD, Mark G. Davies, MD, Joseph J. Naoum, MD, Eric K. Peden, MD
Methodist DeBakey Heart & Vascular Center, Houston, TX

BACKGROUND: Obtaining hemodialysis access after exhaustion of all sites in the upper extremities remains a significant obstacle to continued care. The lower extremity is increasingly being used as an alternative access with variable outcomes. The purpose of this study is to evaluate our experience with lower extremity arteriovenous access.

METHODS: A database of 34 patients, (58% females and mean age of 47 years) that underwent lower extremity arteriovenous access from March 2006 to August 2011 was queried. A total of 35 extremity arteriovenous (AV) accesses were created: 13 the femoral vein transposition (FVT) arteriovenous fistulas (AVF) (37%) and 22 prosthetic AV grafts (63%). All patients had previously failed multiple access surgeries in the upper extremity (mean 4 for FVT and 7 for AVG).

RESULTS: Technical success was achieved in all cases (100%) with no perioperative mortality and low perioperative morbidity. Patient’s characteristics, complications and number of reinterventions for the FVT and AVG groups are listed in Table 1. In two diabetic patients a concomitant distal revascularization interval ligation (DRIL) procedure was performed with a FVT fistula to prevent steal syndrome. During a mean follow-up of 36 months, 20 (60%) accesses remained functional. (45% FVT and 55% AVG; p = ns). Average function time for FVT AVF was of 20 ± 13 months while the AVG was 11 ± 10 months (p = 0.03). Thrombotic and infective complications were higher in the AVG compared to FVT. 4 access revisions (3 due to infection, 1 open thrombectomy) were necessary in the AVG group vs. 3 cases revisions (2 plication and DRIL). Primary (75% vs. 57%, FVT vs. AVG; p < 0.01), Assisted Primary (87% vs. 67%; p < 0.01) and Secondary Patency (90% vs. 72%; p < 0.01) were significantly better in the FVT compared to the AVG at 12 months.
CONCLUSION: Autologous hemodialysis access creation in the lower-extremity has markedly superior results than prosthetic material. Patients receiving AVG do not demonstrate a sustained benefit from the access site due to high rate complications, greater intervention rate and limited access functionality. The use of AVG in the leg should be questioned.

Table I: Patient Characteristics and Complications for the AVF and AVG Groups

<table>
<thead>
<tr>
<th>Access Type</th>
<th>FVt AVF (13)</th>
<th>LE AVG (22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (yrs)</td>
<td>41 ± 11</td>
<td>54 ± 12 *</td>
</tr>
<tr>
<td>Females</td>
<td>46%</td>
<td>68%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>76%</td>
<td>81%</td>
</tr>
<tr>
<td>Coronary Artery Disease</td>
<td>28%</td>
<td>27%</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>38%</td>
<td>36%</td>
</tr>
<tr>
<td>Peripheral Artery Disease</td>
<td>8%</td>
<td>18%</td>
</tr>
<tr>
<td>Procedure related Morbidity</td>
<td>38%</td>
<td>95%**</td>
</tr>
<tr>
<td>Steal syndrome</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>Edema > 2 weeks</td>
<td>8%</td>
<td>18%</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>14%</td>
<td>36%</td>
</tr>
<tr>
<td>Infection</td>
<td>8%</td>
<td>27%*</td>
</tr>
<tr>
<td>Pseudoaneurysm</td>
<td>8%</td>
<td>5%</td>
</tr>
<tr>
<td>2nd Intervention rate</td>
<td>23%</td>
<td>36% *</td>
</tr>
</tbody>
</table>

*p < 0.05 ** P < 0.01
OBJECTIVES: Tapered grafts are used for hemodialysis access with the goal of reducing ischemic complications. Currently, most AV graft thromboses are treated with percutaneous interventions at outpatient access centers. These interventions are often associated with angioplasty of the arterial anastomosis and arterial end of the graft to diameters greater than 6 mm. Dilatation of the proximal 4 mm. taper will produce at least an elimination of the taper and potentially rupture, pseudoaneurysm or steal syndrome. We performed this retrospective study to determine the fate of tapered AV grafts after percutaneous intervention.

METHODS: We retrospectively reviewed the outcomes of eighty 4–7 mm tapered PTFE grafts placed for hemodialysis access in 74 patients. Percutaneous interventions for graft complications were performed at one of two outpatient access centers. The type and location of the interventions were analyzed with a focus on those grafts which underwent interventions on the inflow artery, arterial anastomosis and proximal graft segments. Primary and secondary patency rates and the frequency of complications of rupture, pseudoaneurysm and steal were calculated for this subgroup.

RESULTS: Thirty three of eighty grafts had a total of 63 interventions of the inflow artery, arterial anastomosis or proximal graft. Angioplasty was performed with balloons ranging from 5 to 10 mm. with 79% of interventions utilizing balloons 6 mm. in diameter or greater. In these 33 grafts, seven ruptures or pseudoaneurysms of the arterial anastomosis or proximal graft (24.2%) were treated with four covered stents and three surgical revisions. Four limbs (12%) developed steal syndrome, two of which required open surgical revision. One patient had two complications, making the overall complication rate 30.3% (10/33). Primary and secondary patency rates for this subgroup were 21.8% and 68.7% respectively at 6 months and 12.5% and 53.1% at one year.

CONCLUSIONS: The majority of tapered AV grafts in this series required secondary interventions within 12 months of placement. Most patients required inflow intervention and dilatation of the artery, anastomosis and proximal graft to 6 mm. or greater was common. This eliminates the benefit of the taper and resulted in rupture, pseudoaneurysm or steal syndrome in over 30% of patients in this series. This study raises questions about the benefits of tapered AV grafts for dialysis access with current endovascular strategies utilized for graft thrombosis.
P32. Salvaging the Failed Hemodialysis Reliable Outflow (HeRO) Vascular Access Device: Patterns of Failure and Therapy

Javier E. Anaya-Ayala, MD, Geraldine J. Chen, BS, Matthew K. Adams, MD, Mittul S. Patel, MD, Farhan G. Ahmed, BS, Jean Bismuth, MD, Eric K. Peden, MD, Mark G. Davies, MD, Joseph J. Naoum, MD
Methodist DeBakey Heart & Vascular Center, Houston, TX

BACKGROUND: Hemodialysis Reliable Outflow (HeRO) (Hemosphere Inc.) Vascular Access Device is a long-term access that can overcome some of the challenges of complex dialysis patients with exhausted traditional peripheral access sites and outflow problems due to central venous occlusive disease (CVOD). Initial studies have demonstrated lower rates of infectious complications compared with tunneled dialysis catheters (TDC) and similar patency to traditional arteriovenous grafts (AVG). Experience with HERO catheter salvage has not been reported. We performed a retrospective evaluation our institutional experience salvaging this device.

METHODS: A database of thirty three patients (51% males with mean age of 55 ± 19 years) that underwent implantation of the HeRO device from November 2008 to August 2011 was queried. Data included demographics, anatomic and clinical factors, functional and patency rates were determined. Complications, reinterventions, and other factors influencing outcomes were also examined.

RESULTS: 27 patients had history of arterial hypertension, 14 had type 2 diabetes and 9 coronary artery disease. The primary indication were: Need for access creation in the setting of CVOD with exhausted peripheral sites in thirty two patient; and salvage of an existing and functioning arteriovenous fistula (AVF) in one case. The HeRO device was successfully implanted in all patients (Technical success of 100%), the graft was component was anastomosed in the brachial artery in 32 patients (end to side fashion) and the cephalic vein in one case (end to end). The most common access location for the catheter component was the Internal Jugular vein (27 (81%) patients) followed by subclavian veins in 6 (15%) and the cephalic vein in one (3%). Complications included 10 cases of graft thrombosis, resolved by percutaneous (7) or open (1) thrombectomies of the graft component (31%), 4 cases graft removal were required secondary to infection and failure due to thrombosis (12%). The primary patency, assisted primary patency and secondary patency rates at 12 months were 55%, 64% and 64% respectively. 9 (30%) patients died from comorbidities non-related to the access procedure, no documented cases of bacteremia occurred during the follow up period.

CONCLUSIONS: HeRO Device is a viable alternative to other complex hemodialysis access solutions in access-challenged patients who otherwise have to rely on TDC; however it is associated with high reinterventions and failure rates 43% of cases.
P33. To BAM or Not to BAM?: A Closer Look at Balloon Assisted Maturation

Trevor DerDerian, MD, Anil P. Hingorani, MD, Alexander Shiferson, DO, Robert Jimenez, MD, Ed Aboian, MD, Theresa Jacob, PhD, Pamela Boniscavage, RVT, Enrico Ascher, MD
Maimonides Medical Center, Brooklyn, NY

OBJECTIVES: Balloon assisted maturation (BAM) is a recent, innovative, yet controversial method for developing autogenous arterio-venous fistulae (AVF), with little supportive data. Few retrospective studies have addressed the efficacy of BAM and cofactors affecting successful maturation. We conducted a retrospective analysis of our vascular access database to compare possible factors associated with a successful BAM, as determined by increase in volume flow of the fistulae.

METHODS: Between 2009 and 2010, data was prospectively collected on patients undergoing BAM of their AVF under ultrasound guidance at our institution. 30 of these patients, consisting of 143 BAMs, were retrospectively analyzed. Data collection included: past medical history, age, number of BAM procedures performed, volume flow measurement (VFM) in mid-fistulae, size of balloon used, and presence of post procedural wall hematoma. VFM was determined with duplex within one month prior to and subsequent to each BAM performed.

RESULTS: Of the 30 patients, consisting of 143 BAMs, the average age was 69 years old ± 15 (range 38–92) with 20 males and 10 females. The most common risk factors being hypertension (n = 27) and diabetes mellitus (n = 16). The average BAM per patient was 4.8 (range 1–7). Of the 143 BAM procedures, 4 were excluded due to absence of preoperative or postoperative duplex. In 139 BAMs, 74 developed a post procedural hematoma as observed on duplex, and 76 showed a increase in VFM. In all BAMs analyzed, there was no correlation observed between the presence of a hematoma and increase in VFM (p = 0.87). Hematomas occurred most frequently during the second BAM procedure, with 24.3% of all hematomas observed. In 139 BAMs, 8 different balloon sizes were used, 3 mm–10 mm, with the 7 mm balloon being the most frequently used (n = 34). No significant difference was noted between increase in VFM in 3 mm to 7 mm balloons. A 8 mm balloon was used in 31 BAMs with 22 developing hematomas. Of the 8 mm balloon group, a statistical difference was noted between increase in VFM with presence of a hematoma and increase VFM without presence of a hematoma (p = 0.027).

CONCLUSIONS: These preliminary data, suggest that a more aggressive approach to BAM, with use of larger balloons to create hematoma formation, may have a significant impact on performing a successful maturation in respects to increase in VFM.
P34. Endograft Salvage of Failing Hemodialysis Access: A Feasibility Study

Alison J. Kinning, MD
Michigan Vascular Center, Flint, MI

INTRODUCTION: The incidence of ESRD is on the rise. In 2008, approximately 355,000 individuals were on hemodialysis (HD) with about 103,000 new patients annually. The most common cause of hospitalization in these patients is HD access placement, maintenance, and associated complications—including, pseudoaneurysm (PA) formation, skin erosion, graft thrombosis, and infection.

Proximal venous outflow stenosis causes increased resistance leading to weakening and dilatation of the vein or graft. PAs that are not repaired may result in skin erosion, rupture, or infection. Current standard of treatment of PAs is surgical revision.

We hypothesize that percutaneous covered stent placement is a viable and safe alternative to surgical resection for maintaining access patency.

METHODS: A micropuncture sheath was placed, and a diagnostic fistulogram was obtained. Patients were anticoagulated using intravenous heparin at the discretion of the interventionalist. Fluency self-expanding covered stents were deployed, and a 6-French sheath was placed following deployment. Duplex ultrasound studies were performed at two- and six-month post-operative intervals.

RESULTS: From July 2005 to May 2010, we prospectively evaluated 32 patients of whom 24 were enrolled. Ten patients had multiple PAs. Nine had previous interventions consisting of angioplasty of stenotic areas. There were no complications from the PA repairs. Two-month follow-up duplex was completed on 83% (20/24) of patients and six-month follow-up duplex was completed on 58% (14/24). One patient requested stent removal secondary to pain after the two-month follow-up. One patient died before completing six-month follow-up. One patient has not been enrolled for six months. Three patients had stent explantation before two-month follow-up duplex. Two patients had the stent removed due to infection before six-month follow-up. Two- and six-month duplex showed 100% patency and effective exclusion of PAs. One patient developed a late complication of stent fracture with new PA formation. To date, the longest duration of patency is 54 months.

CONCLUSION: Results show that minimally invasive endovascular techniques can be safely used to exclude PAs while prolonging use of the access site. In our study, infection was the most common cause for endograft removal. A larger sample size and additional follow-up is needed to validate and support our current results. It should be noted that late complications may arise, and patients should continue to be followed at regular intervals.
P35. Primary Patency of Arteriovenous Fistulas and Biosynthetic Grafts: Is There a Gender Difference?
Loren L. Masterson, MD, MBA, Patricia Pentiak, MD, Mohsen Bannazadeh, MD, Adewunmi Adeyemo, MD, O. William Brown, MD
William Beaumont Hospital, Royal Oak, MI

OBJECTIVES: Patients who require long term hemodialysis (HD) typically receive either an arteriovenous fistula (AVF), biosynthetic prosthesis graft (AVG) or tunneled central catheter. AVF are the preferred primary access for patients, and gender differences have been reported in the past in their implementation and use. While studies have shown that AVF have greater patency overall, AVG are implemented in women at a higher rate than men possibly due to concerns over vessel size or early fistula failure. This retrospective study aims to examine the primary patency rates of both AVF and AVG at our institution, and to evaluate any gender differences in their use or function.

METHODS: A retrospective chart review was conducted. All AVF and AVG performed over the previous two years at our institution were included for review. Patient demographics such as cause of end-stage renal disease (ESRD), age at time of procedure and gender were evaluated, as well as primary patency (defined as time until first successful HD treatment). Patency at one year and any complications were also reviewed where data was available.

RESULTS: A total of 132 patients received AVF or AVG in the study time period. Any patients with inadequate follow-up or without recorded primary patency rates were excluded. A total of 12 AVG and 36 AVF over the previous 2 year time period were qualified. Significantly more women received AVG than men (~75% of AVG studied were performed in women, in comparison to 25% of AVF). The one year patency of all AVG and AVF was 70.0% (standard error of 8.46%), which is consistent with previously reported national patency rates. When comparing primary patency of AVG and AVF, there was no statistical difference demonstrated (p value 0.64). When evaluating complications, complication rates were similar in women who received AVF versus AVG (~37.5% versus 38.0%).

CONCLUSIONS: At our institution, there was no significant difference in patency or complications between AVG and AVF over a 1 year time period in female patients. While long term follow up is needed, AVG are still a viable option for women that do not qualify for an AVF. Future studies include a review of preoperative evaluation of these patients in comparison to long term patency.
Intracardiac Leiomyomatosis: A Case Report and Literature Review

Trisha Roy, BASc, MD Candidate1, Richard O'Connor, MD, FRCSC2, Ian McGilvray, MD, PhD, FRCSC3, Graham Roche-Nagle, MD, MBA, FRCSI, EBSQ-VASC3

1University of Toronto, Toronto, ON, Canada, 2Credit Valley Hospital, Mississauga, ON, Canada, 3University Health Network, Toronto, ON, Canada

OBJECTIVES: Intravenous leiomyomatosis (IVL) is a rare smooth muscle tumour characterized by the unusual growth of uterine leiomyomas into pelvic veins. Although these tumours are benign, in some cases they can extend into the inferior vena cava (IVC) and right-sided heart chambers resulting in life-threatening consequences. There is growing recognition of this fatal condition but intracardiac leiomyomatosis (ICL) may still be under recognized. Kocica et al performed a literature review in 2005 of all reported cases of ICL. We present an updated extensive literature review of ICL from 2005–2011 and a case report illustrating features of this pathology.

METHODS: We performed a comprehensive literature search using MEDLINE, Embase and PubMed databases using MeSH terms: “leiomyomatosis” and “heart”, limited to English articles from 2005 to 2011. References within each publication were searched to identify reported cases of ICL to date.
RESULTS: We present a case of a 37-year-old female with ICL extending to the right atrium and treated with a one-stage tumor excision with perioperative TEE. This case demonstrates the important factors in diagnosis and management of this pathology. The literature search generated 41 published articles of 116 ICL cases from 2005–2011. There are a total of 229 cases of ICL reported from its first description in 1907. 51% of all ICL cases were reported from 2005–2011. Patients are on average 42.9 years old (20–72) and presented most often with symptoms of dyspnea, palpitations and syncope. The most commonly reported preoperative imaging techniques were CT and transthoracic echocardiogram (TTE). However, misdiagnoses on CT and TTE of atrial myxoma or atrial/IVC thrombus were reported in 10 cases. Radical excision is required because incomplete excision results in recurrences, as reported in 11 cases. Radical excision may be achieved via one-stage (60% of reported cases) or two-stage (40% of reported cases) operations. Perioperative TEE was reported in 5 cases and was a powerful tool for diagnosis and guiding surgical management.

CONCLUSIONS: ICL may be an under recognized fatal condition that requires a high index of clinical suspicion. Contemporary imaging tools including TEE can aid in diagnosing ICL and guide optimal surgical strategy.
OBJECTIVE: To study the technical feasibility and procedural outcomes of multimodality endovascular treatment on acute symptomatic inferior vena cava (IVC) thrombosis.

METHODS: Retrospective analysis was performed of consecutive patients between the years 2004 to 2011 with acute symptomatic IVC thrombosis treated by endovascular methods. Demographic data, technique modality and procedure outcomes were collected.

RESULTS: 17 patients (10 male) who ranged in age from 26–72 years (mean, 54 years) with acute (<2 weeks) symptomatic IVC thrombosis underwent endovascular revascularization. The average onset of symptoms was 4.9 days. Infrarenal IVC thrombus and iliac vein thrombus was identified in all patients. 88% patients had at least one risk factor for IVC thrombosis. 82% had a prior placed IVC filter. Phlegmasia cerulea dolens was the presenting symptom in 7 patients (41%). Multimodality endovascular techniques, including Angiojet thrombectomy (n = 13, 76%), Trellis thrombectomy (n = 10, 59%), catheter directed thrombolysis (CDT) (n = 15, 88%), adjunctive venoplasty (n = 12, 71%) and stent placement (n = 4, 24%) were utilized in combination for endovascular treatment. Unilateral (29%) or bilateral (59%) popliteal veins were accessed for catheterization in 15 patients whereas femoral vein or internal jugular vein was utilized in 2 patients (12%). The number of endovascular procedures ranged from 1–3 (mean, 2.10 procedures). Patients with more than one procedure typically had overnight CDT with TPA 1 mg/kg/hour through one or two infusion catheters (n = 15). CDT as the sole treatment was performed in 2 patients. Grade III (complete) lysis was achieved in 13 (76%) and grade II (50%-90%) lysis in 4 (24%) patients. No serious procedure-related complications were encountered, although two of the patients died of phlegmasia related complications.

CONCLUSIONS: A multimodality approach to the acutely thrombosed inferior vena cava is very effective at rapid restoration of inline blood flow. The presence of a thrombosed IVC filter does not preclude the use of these techniques.
P38. Resolution of Symptoms Post Isolated Celiac Artery Revascularization

Madian Yahya, MD1, Emilia Krol, MD1, Alan M. Dietzek, MD2, Dahlia Plummer, MD1, Richard Hsu, MD1
1Danbury Hospital, Danbury, CT, 2Surgery, Danbury Hospital, Danbury, CT

OBJECTIVES: Due to the extensive collateralization between the celiac artery (CA) and the superior mesenteric artery (SMA) it has been argued that isolated atherosclerotic CA stenoses do not result in symptomatic ischemia requiring intervention. This report addresses whether isolated CA stenosis can manifest symptoms and whether single vessel CA endovascular revascularization can lead to symptom relief.

METHODS: A retrospective chart review was done on 6 cases of isolated celiac artery (CA) endovascular revascularization performed by two fellowship-trained vascular surgeons in our institution since January 2007. The lesions were detected by Duplex Ultrasonography, CT angiography (CTA), or Magnetic Resonance Angiography (MRA). They were then confirmed by angiography and treated concomitantly with stent placement. Completion angiogram confirmed patency. The patients were then maintained on Plavix for three months after the procedure. Data gathered included: gender, age, presenting symptoms, pre-operative testing, intra-operative angiographic findings, type of procedure, symptom resolution and length of follow up.

RESULTS: All six patients (all female, with mean age of 57.6 years old) had a patent SMA and underwent successful stenting of isolated CA lesions. The patients presented with chronic abdominal symptoms including: diarrhea (33%), nausea and vomiting (33%), chronic abdominal pain including postprandial (100%), duodenal/gastric ulcers refractory to medical treatment (33%), and/or weight loss (33%). All of the patients had more than one symptom and underwent a work-up that excluded other primary causes. One patient, who was previously treated for symptomatic isolated celiac stenosis, presented two years later with recurrent symptoms and inter-stent stenosis which required re-intervention.

100% of the patients reported improvement of symptoms on follow up. Two patients presenting with gastric and duodenal ulcers due to isolated celiac artery stenosis had resolution of these ulcers postoperatively. None of our patients had any significant morbidity postoperatively, with 0% thrombosis, peripheral arterial injury, kidney failure, infection, significant bleeding or MI. The length of follow up ranges from 3 weeks to 2.5 years.

CONCLUSIONS: We have shown that endovascular treatment of isolated celiac artery stenosis can result in resolution of symptoms consistent with intestinal ischemia. Further, our results would indicate that these procedures can be performed with very low morbidity and mortality rates.
P39. Assessing the Prevalence of Thrombolysis in DVT Management and Identifying the Factors Contributing to Its Utilization

Charles V. Strom, MD, Justin Lee, MD, Haisar Dao, MD, Julia Tassinari, MD, Rocco Ciocca, MD
St. Elizabeth’s Medical Center, Boston, MA

OBJECTIVE: To determine the prevalence of thrombolysis in patients admitted with DVT’s and to elucidate patient and hospital characteristics affecting its utilization.

METHODS: A retrospective analysis was conducted using the Nationwide Inpatient Sample (NIS) for the years 2004 through 2008. The database was queried using ICD-9-CM codes for all diagnoses of venous embolism and thrombosis (excluding DVT’s in various organ systems). The number of patients receiving thrombolytics was trended over that period. Searches comparing the anatomic locations of treated DVT’s and medical center characteristics were also performed.

RESULTS: Data from this cohort of patients, representing all discharges from a 20% stratified sample of US hospitals over five years, demonstrate an increasing trend in the diagnosis of proximal leg DVT’s (41.5% to 49.3% of all DVT diagnoses), and a decreasing trend in the rate of distal leg DVT’s (33.3% to 27.5%). Resultant use of thrombolytics over that period increased, from 1.3% of patients in 2004 to 1.9% in 2008 (p < 0.001). By location, 3.1% of patients with distal leg DVT’s received thrombolysis, versus 3.5% with DVT’s located elsewhere (p = 0.048). More notably, 5.3% of patients with proximal leg DVT’s received thrombolysis, versus 1.9% located elsewhere (p < 0.001). By teaching status, 2.5% of patients at teaching hospitals received thrombolysis, compared to 3.6% at nonteaching hospitals (p < 0.001). Hospital location had no effect, as 3.4% of patients received thrombolysis at both urban and rural centers (p = 0.489). Multivariate analyses compared the likelihood of receiving thrombolysis across five different patient and hospital criteria. Odds ratio of receiving thrombolysis in distal leg DVT’s was 0.88 (p = 0.092), but significantly greater for proximal leg DVT’s (OR 2.938, p < 0.001). Thrombolysis was less likely to be given at teaching programs (OR 0.702, p = 0.001), while more likely at nonteaching institutions (OR 1.427, p = 0.001). For reference, thrombolysis in the treatment of pulmonary emboli was also considered (OR 1.798, p < 0.001).

CONCLUSIONS: We identified a steady increase in the use of thrombolytics for venous embolism and thrombosis. This is best exemplified by the heightened prevalence of thrombolytic utilization in the management of proximal lower extremity DVT’s. Institutional teaching status also appears to play a role, with a significantly greater usage of thrombolysis by nonteaching facilities. Hospital location (urban vs. rural) does not appear to play a role.
P40. The Role of Ultrasound to Identify Non-Thrombotic Lower Extremity Pathology
Anil Hingorani, MD, Mohsin Khan, Enrico Ascher, MD, Natalie Marks, MD, RVT, Alexander Shiferson, DO, Robert Jimenez, ME, ED Aboian, MD, Theresa Jacob, PhD Maimonides Medical Center, Brooklyn, NY

Accreditation in peripheral venous testing can be obtained based upon femoropopliteal duplex ultrasound evaluation, and many laboratories limit their examination to this segment only. This simplified protocol detects acute femoropopliteal deep venous thrombosis (DVT) but misses calf vein DVT, superficial venous thrombosis, chronic DVT, venous reflux, and other non-venous findings potentially responsible of the patients’ presenting conditions. A protocol limited to the femoropopliteal segment results in additional unnecessary testing and can create patient dissatisfaction. We evaluated the differences in the diagnosis between a limited femoropopliteal versus a complete approach to the venous ultrasound evaluation of the lower extremities in patients examined in an outpatient vascular laboratory.

METHODS: A database with the complete ultrasound exams of the lower extremity including the common femoral, deep femoral, popliteal, tibial and peroneal veins, calf muscular veins, great and lesser saphenous veins performed in 1208 consecutive patients from July 2009–February 2010 was queried.

RESULTS: Acute femoropopliteal DVT was found in (20/1208) = 1.66% of the patients.
Acute infrapopliteal DVT was found in (36/1208) = 2.98%. Chronic femoropopliteal DVT was found in (42/1208) = 3.48%. Superficial thrombophlebitis of Lower extremities--84/1208 = 6.95%.

In addition, deep venous insufficiency (>500 milliseconds) was found in (385/1208) = 31.87% and superficial venous insufficiency in (212/1208) = 17.55% (>500 milliseconds).

A mass (cyst, hematoma, solid mass or aneurysm) was found in (10 cysts, 4 Hematomas, 46 solid mass, 3 aneurysms) 64/1208 = 5.3%.

CONCLUSIONS: Limited femoropopliteal ultrasound examination for acute DVT would have only detected a small percentage of the positive findings. These data suggest that the duplex exam can be used to further delineate the cause of outpatients’ symptoms as compared to the limited protocol.
Endovascular Exclusion of a Large External Iliac Vein Aneurysm: A Novel Approach

Mina Todorov, MD, Diego Hernandez, MD
St. Joseph Mercy Oakland, Pontiac, MI

OBJECTIVES: Venous aneurysms are uncommon entities, particularly those involving the iliac veins. Their etiology is often secondary to trauma, and although usually asymptomatic, these aneurysms may lead to complications such as compression, thrombosis, embolization and rupture. Due to their rare occurrence, there has been no consensus as to what constitutes optimal treatment. Historically, these aneurysms have been treated by open techniques with tangential aneurysmectomy and lateral venorrhaphy, or by interposition grafting using other venous or synthetic conduits. We present a case of a large external iliac vein aneurysm successfully treated by endovascular exclusion.

METHODS: The patient is a 62 year-old male who underwent work-up for a left pelvic mass incidentally discovered during routine urological examination. An MRI confirmed a large saccular external iliac vein aneurysm. As a teenager, he had developed an AV fistula from a traumatic injury to his SFA. He subsequently developed heart failure and the fistula was ligated. For years he had persistent left lower extremity edema previously attributed to a left ankle fracture.

Aorto-iliac angiogram revealed a corkscrew appearance to his dilated left external iliac artery (Figure 1, left image), a sequela of his distal AV fistula. Ascending venogram confirmed a large saccular external iliac vein aneurysm extending just cranial to the common femoral vein, and stenosis of the distal left common iliac vein (Figure 1, right image), likely secondary to compression from the tortuous iliac artery. The aneurysm was excluded by using a 16 mm x 18 mm x 13.5 cm Gore Excluder stent graft. Our access was via cut-down on the mid-femoral vein, and we utilized IVUS to obtain appropriate measurements and ensure adequate positioning.
RESULTS: Post-deployment venogram confirmed complete aneurysm exclusion and no endoleak. He was discharged home on POD 2 and resumed his daily activities without limitations. He used a compression stocking to control his edema, which resolved quickly. Six month venous Duplex revealed a smaller aneurysm sac and no endoleak.

CONCLUSIONS: To our knowledge, this is the first reported case of a large external iliac vein aneurysm treated by endovascular exclusion. We have demonstrated the feasibility of this approach, with short-term follow-up that appears satisfactory.
A Light-Based, Radiation-Free Angiographic Simulator for the Study of Complex Hemodynamics

Doran Mix, BS1, Daniel B. Phillips, PhD2, Steven Day, PhD2, Nicole Varble, MS1, Karl Q. Schwartz, MD1, Ankur Chandra, MD1
1University of Rochester, Rochester, NY, 2Rochester Institute of Technology, Rochester, NY

OBJECTIVE: The experimental study of hemodynamics through angiography is difficult. Most studies require large animal models with concurrent exposure to ionizing radiation in dedicated, expensive animal facilities. Our goal was to develop an experimental angiographic system without the need for ionizing radiation and animal models.

METHODS: A physiologically accurate, in vitro arteriovenous fluid model was used to simulate the vascular system. An Infimed high-resolution CCD imaging unit was used to image the photo-lucent vascular model over a light source (Figure 1A). Black photo-opaque dye was used as the contrast medium in varying concentrations delivered through a power injector. The entire imaging system was driven through a customized computer interface.

RESULTS: The use of the light-based system allowed for both fluoroscopic (Figure 1B) and digital-subtraction DICOM image (Figure 1C) acquisition and storage to a local PACS server for future study. Total imaging area obtained was 506 cm² with spatial 1024 x 1024 pixel resolution of 250 μm² per pixel at a maximum frame rate of 15 fps. Various parameters including flow, contrast...
density, and downstream contrast dilution were quantified after varying contrast injection rates. The system accurately imaged real-time catheter and guidewire movements during physiologic flows and contrast injections.

CONCLUSIONS: Through the novel utilization of imaging technology and in vitro hemodynamic simulation, experimental angiographic studies can be carried out free of radiation and large animal work in a variety of anatomic situations. The current limitations include the inability to image through tissues, requiring recreation of the vascular system of interest on the hemodynamic simulator. The potential applications of this technology include training, device testing, and development of angiographically-derived hemodynamic algorithms which would be too cumbersome or unethical to obtain in human or animal settings.
2:15 pm – 3:45 pm FOCUSED SESSION—
Pushing the Limits of Vascular Technology
(Encore 4-8)
Moderated by: Fred A. Weaver, MD
R. Clement Darling, III, MD

SPEAKERS:

Carotid
Peter A. Schneider, MD
Kaiser Foundation Hospital, Honolulu, HI

Aorta and Aortic Aneurysm
Benjamin W. Starnes, MD
University of Washington, Seattle, WA

Lower Extremity
Richard F. Neville, MD
George Washington University, Washington DC

Visceral/Renal
Mark G. Davies, MD
Methodist Hospital, Houston, TX

Venous
Robert B. McLafferty, MD
SIU School of Medicine, Springfield, MI

3:45 pm – 4:15 pm COFFEE BREAK IN EXHIBIT HALL &
ePOSTER VIEWING
(Encore 1-3)
4:15 pm – 5:00 pm SCIENTIFIC SESSION 6—
LOWER EXTREMITY ARTERIAL
DISEASE II
(Encore 4-8)
Moderated by: Rabih A. Chaer, MD
George H. Meier, MD

4:15 pm – 4:28 pm 19. Contemporary Outcomes of Endovascular
Interventions for Arterial Acute Limb
Ischemia (ALI)
Raphael Byrne, BA, Luke Marone, MD,
Robert Rhee, MD, Jae Cho, MD, Dan Winger, MS,
Li Wang, MD, Clareann Bunker, MPH, PhD,
Michel S. Makaroun, MD, Rabih A. Chaer, MD
University of Pittsburgh, Pittsburgh, PA

OBJECTIVES: Thrombolysis for arterial ALI has become first line therapy based
on studies published over two decades ago primarily using urokinase. The
purpose of this study was to assess outcomes of patients treated for ALI using
contemporary lytic agents and endovascular techniques.

METHODS: Consecutive patients with lower extremity ALI treated with throm-
bolysis between 2005–2011 were studied. All patients were treated with tPA
delivered via catheter directed thrombolysis (CDT) and/or pharmacomechanical
thrombolysis (PMT), with adjunctive endovascular or surgical interventions.

Table 1: Patient Characteristics and Indications for Intervention

<table>
<thead>
<tr>
<th></th>
<th>Overall N (%)</th>
<th>CDT N (%)</th>
<th>PMT N (%)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age</td>
<td>65.45</td>
<td>65.53</td>
<td>65.35</td>
<td>0.943</td>
</tr>
<tr>
<td>Sex (Female)</td>
<td>65 (42.2)</td>
<td>34 (41.0)</td>
<td>31 (43.7)</td>
<td>0.746</td>
</tr>
<tr>
<td>Smoking</td>
<td>112 (76)</td>
<td>57 (39)</td>
<td>55 (37)</td>
<td>0.389</td>
</tr>
<tr>
<td>CAD</td>
<td>83 (55.7)</td>
<td>44 (55.0)</td>
<td>39 (56.5)</td>
<td>0.87</td>
</tr>
<tr>
<td>Afib</td>
<td>33 (22)</td>
<td>21 (25.9)</td>
<td>12 (17.4)</td>
<td>0.239</td>
</tr>
<tr>
<td>Hypertension</td>
<td>116 (78.4)</td>
<td>62 (77.5)</td>
<td>54 (79.4)</td>
<td>0.843</td>
</tr>
<tr>
<td>Diabetes</td>
<td>59 (39.9)</td>
<td>34 (42.5)</td>
<td>25 (36.8)</td>
<td>0.504</td>
</tr>
<tr>
<td>Dialysis</td>
<td>7 (4.7)</td>
<td>3 (3.8)</td>
<td>4 (5.8)</td>
<td>0.704</td>
</tr>
<tr>
<td>Indications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In situ thrombosis</td>
<td>37 (24.0)</td>
<td>21 (25.3)</td>
<td>16 (22.5)</td>
<td>0.71</td>
</tr>
<tr>
<td>Failed Stent</td>
<td>41 (26.6)</td>
<td>18 (21.7)</td>
<td>23 (32.4)</td>
<td>0.147</td>
</tr>
<tr>
<td>Failed Bypass</td>
<td>56 (36.4)</td>
<td>30 (36.1)</td>
<td>26 (36.6)</td>
<td>0.951</td>
</tr>
<tr>
<td>Pop Aneurysm</td>
<td>6 (3.9)</td>
<td>4 (4.8)</td>
<td>2 (2.8)</td>
<td>0.687</td>
</tr>
<tr>
<td>Embolization (Afib, aortoiliac)</td>
<td>22 (14.3)</td>
<td>16 (19.3)</td>
<td>6 (8.5)</td>
<td>0.066</td>
</tr>
</tbody>
</table>
Procedural success and outcomes were obtained for the whole series and were also compared between the CDT and PMT groups. Limb salvage, and survival were assessed using Kaplan-Meier estimation and Cox proportional hazards models.

RESULTS: 154 limbs (83 CDT only, 56 CDT for incomplete PMT, 15 standalone PMT), were treated in 147 patients presenting with ALI (Rutherford class I 9.7%, class IIa 70.1%, class IIb 20.1%). Mean follow-up was 15.20 months (range 0.56–56.84). Patient characteristics and indications for intervention are detailed in Table. Technical success was achieved in 80.5% of cases, with a 30-day mortality rate of 5.2%. Procedural complications included systemic bleeding (5.8%), access site hematoma (4.5%), and acute renal failure (3.9%). The mean runoff score improved from 13.42 pre- to 7.43 post intervention. Adjuvant revascularization procedures were required in 89.0% of patients and were endovascular (68.8%), hybrid (9.1%) or open (11.0%). Only 7.1% of patients required a fasciotomy. Overall rate of major amputation was 14.9% (16.1% for CDT only, 11.3% for PMT, p = NS). Predictors of limb loss by life table analysis included ESRD (HR = 12.754, p = 0.0479), and poor pedal outflow (p = 0.0022), with an incremental protective effect for improved pedal outflow [(HR = 0.212, p = 0.0078 for 1 pedal outflow vessel); (HR = 0.062, p = 0.003 for ≥2 pedal outflow vessels)]. Gender, smoking, diabetes, Rutherford score, runoff score, and thrombosed popliteal aneurysm, were not significant predictors of limb loss. In addition, limb salvage appeared equivalent between the CDT and PMT groups.

CONCLUSIONS: Endovascular therapy with thrombolysis using tPA remains an effective treatment option for patients presenting with lower extremity ALI, with equivalent limb salvage with CDT or PMT. Patients with ESRD and poor pedal outflow have increased risk of limb loss and may benefit from alternative revascularization strategies.
MINI PRESENTATIONS

MP34. Gracilis Muscle Flap for Groin Infections: Under Utilized by the Vascular Surgeons
Ahsan T. Ali, MD, Sarasijhaa Desikan, MS, J. Gregory Modrall, MD, Mohammad M. Moursi, MD, John F. Eidt, MD
University of Arkansas for Medical Sciences, Little Rock, AR

OBJECTIVES: The incidence of arterial infections in the groin area is on the rise. Treatment of arterial infection poses a challenge when multiple procedures have destroyed skin and soft tissue over the femoral artery. The femoral can be vulnerable due to lack of adequate coverage. It is hypothesized that the gracilis muscle flap can be successfully used as muscle pedicle flap to provide coverage of these wounds. This may be under utilized by the vascular surgeons. This series reviewed all the gracilis flaps performed over a 15-year period exclusively by vascular surgeons.

METHODS: All reconstruction using muscle flaps were reviewed from 1997 through 2011.

RESULTS:

<table>
<thead>
<tr>
<th>Table 1</th>
<th>n = 50 (limbs = 54)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr.)/sex (M:F)</td>
<td>64.3 ± 11.4/(39:8)</td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
</tr>
<tr>
<td>Bleeding (n)</td>
<td>2</td>
</tr>
<tr>
<td>Pseudoaneurysm (n)</td>
<td>3</td>
</tr>
<tr>
<td>Groin sinus (n)</td>
<td>27</td>
</tr>
<tr>
<td>Exposed graft (n)</td>
<td>13</td>
</tr>
<tr>
<td>Mortality (%)</td>
<td>13%</td>
</tr>
<tr>
<td>12-month mortality (%)</td>
<td>22%</td>
</tr>
<tr>
<td>Microbiology (%)</td>
<td></td>
</tr>
<tr>
<td>No growth</td>
<td>16%</td>
</tr>
<tr>
<td>Uni microbial</td>
<td>44%</td>
</tr>
<tr>
<td>Poly microbial</td>
<td>32%</td>
</tr>
<tr>
<td>Recurrent infection</td>
<td>8%</td>
</tr>
<tr>
<td>Procedure complication</td>
<td>2%</td>
</tr>
<tr>
<td>Limb loss</td>
<td>9%</td>
</tr>
</tbody>
</table>

Vacuum assisted drainage over the flap was used in 16 limbs whereas primary closure was performed in 11 limbs and wet to dry dressing changes were performed in 26. Three primary closures had to be converted to wet to dry saline dressing. One patient had flap necrosis needing a sartorius flap. Overall the flap
survival rate was 98%. One flap necrosis occurred on post op day 8 from persistent infection. All procedures were done in conjunction with a infected graft excision and vascular reconstruction in 90% of the patients. Preoperative mortality was 13%. Mean follow-up of 28 months with a freedom from reinfection of 98%. All flap transposition was performed by vascular surgeons at the time of vascular reconstruction.

CONCLUSIONS: Gracilis muscle is relatively uninvolved and provides for an excellent coverage in the groin area. It is durable and effective against infection. This procedure is technically feasible and can be easily be performed by vascular surgeons at the initial surgery.
OBJECTIVE: Patients with critical limb ischemia (CLI) due to atherosclerotic occlusive disease isolated to the infrapopliteal vessels are beset by diabetes, chronic kidney disease, and cardiac disease. Although percutaneous therapy seems an ideal option in this comorbid population, data suggest worse outcomes compared with multilevel disease. This study reviewed our experience with percutaneous angioplasty (PTA) for atherosclerotic disease isolated to the tibial vessels.

METHODS: All patients undergoing PTA exclusive to the tibial vessels from 2001 through 2010 were retrospectively reviewed. Limb salvage and survival were assessed by Kaplan-Meier analysis. Additional clinical outcomes were subjected to Cox proportional hazards analysis.

RESULTS: Among 399 primary tibial interventions over the study period, 129 limbs in 122 patients (mean age 73) were treated for isolated tibial vessel disease. Average follow-up was 25 months. Eighty-one percent were diabetics, 23% had renal insufficiency, 16% required hemodialysis, and 5% were prior renal transplant recipients. Eighty-nine percent were treated for tissue loss, while 4% were treated for rest pain. Fifty-three percent of treated vessels were occluded. The TP trunk, AT, peroneal, and PT were treated in 17%, 54%, 27%, and 29% of limbs, respectively. Multiple vessels were treated in 23%. Technical success was 85%. Thirty-day peri-operative mortality was 2.3 ± 1% due to 3 post-operative mortalities, 1 of which was attributable to the intervention. Median pre-operative TcPO2 was 15. Median post-operative TcPO2 was 33. Forty percent of limbs had a TcPO2 increase ≥ 20. Freedom from major amputation was 66 ± 5% at 1 year and 63 ± 5% at 3 and 5 years. Overall survival was 76 ± 4% at 1 year, 52 ± 5% at 3 years, and 35 ± 6% at 5 years. Major amputation-free survival was 56 ± 6% at 1 year, 38 ± 5% at 3 years, and 27 ± 5% at 5 years. Diabetes and renal disease were not associated with limb salvage, nor was the specific vessel of intervention. Post-operative TcPO2 ≥ 20 was strongly associated with limb salvage (LR 9.3, P = 0.0023).

CONCLUSIONS: Tibial vessel PTA is relatively safe in the higher-risk population of patients with CLI due to isolated tibial disease, though not without risk. Unfortunately, meaningful mid- to long-term limb salvage is achieved for only a minority of these patients.
OBJECTIVES: The decision to treat critical limb ischemia (CLI) with open surgery (OS) or endovascular therapy (ET) is often guided by individual bias, skill set and intuition rather than established evidence-based criteria. We sought to quantify the degree of equipoise between these treatment options across a range of clinical and anatomic parameters and elucidate the relative importance of these parameters on treatment strategy.

METHODS: A 123-question survey (multiple choice and Likert scale (1–5)) was administered to vascular surgeons from the United States and Canada recruited to participate in a proposed randomized trial of best OS or ET in patients with infrainguinal arterial disease and CLI. Surgeon demographics (7 questions), open and endovascular experience (25 questions) and surgeon bias (91 questions) were assessed. Treatment equipoise was measured as the sum of individual (personal declaration that equipoise exists) and community (offsetting discordance in choice of competing therapies) equipoise.

RESULTS: 76 of 100 surgeons queried completed the survey. 85% of respondents were academic vascular surgeons, 64% completed training more than 10 years previously and 78% had a OS:ET practice ratio of 40:60, 50:50 or 60:40. Ambulatory status, high surgical risk, severe coronary artery disease, frail appearance, and early surgical failure were judged to be very to extremely important (Likert scale 1 and 2) by 88%, 87%, 87%, 83%, and 80% of respondents in choosing between OS and ET, respectively. A greater degree of treatment equipoise was seen with ischemic rest pain (88%) and minor (92%) than major (58%) tissue loss. 79% of surgeons preferred ET when autogenous vein was unavailable, while treatment equipoise was 49% in the presence of suitable saphenous vein. Treatment equipoise was notably low for TASC D anatomy (Figure 1A). 96% of respondents felt the presence of severe common femoral arterial disease should warrant OS, whereas there was significant equipoise with respect to other anatomical factors (Figure 1B).
CONCLUSIONS: Our survey identifies significant equipoise across a range of clinical and anatomic variables in the current treatment of CLI within the North American vascular surgery community, and delineates the relative influence of individual clinical and anatomic parameters on the choice of OS or ET. A strong preference for surgical treatment of TASC D lesions was demonstrated.
MP37. Impact of Pedal Runoff on Clinical and Anatomic Outcomes of Endovascular Tibial Artery Interventions

Javier E. Anaya-Ayala, MD, Matthew K. Adams, MD, Scott S. Saunders, BS, Christopher J. Snolock, MD, Jean Bismuth, MD, Eric K. Peden, MD, Alan B. Lumsden, MD, Mark G. Davies, MD, PhD, MBA
Methodist DeBakey Heart & Vascular Center, Houston, TX

BACKGROUND: While there has been a significant increase in primary endoluminal therapy for tibial artery occlusive disease, the implications of pedal runoff on the outcomes of these interventions is unclear. The purpose of this study is to examine the impact of pedal runoff on long-term clinical and anatomic outcomes of tibial interventions.

METHODS: A prospective database of patients undergoing endovascular treatment of the tibial vessels for rest pain and tissue loss between 2000 and 2011 was queried. Angiograms were reviewed in all cases to assess tibial runoff. Each dorsalis pedis (DP), lateral plantar (LP), and medial plantar (MP) artery was assigned a score according to the reporting standards of the SVS (0, no stenosis >20%; 1, 21%–49% stenosis; 2, 50%–99% stenosis; 2.5, < half the vessel length occluded; 3, > half the vessel length occluded). A foot score (DP + MP + LP) was calculated for each foot (1 to 10). Two runoff score groups were identified: <5 and ≥5. Clinical success was defined as a patient that satisfied all three criteria: absence of recurrent symptoms, maintenance of ambulation and absence of major amputation. Kaplan-Meier survival analyses were performed to assess time-dependent outcomes. Factor analyses were performed using a Cox proportional hazard model for time dependent variables.

RESULTS: 220 limbs in 198 patients (60% male, average age 70 years) underwent endovascular tibial artery interventions for tissue loss. 87% had hypertension, 73% had diabetes mellitus, 59% had hyperlipidemia and 23% had chronic renal insufficiency (76% of these on hemodialysis). Technical success was 99% with a mean of vessels treated per patient and a mean pedal runoff score of 6. Overall mortality was 9% and overall morbidity was 32% at 90 days after the procedure. At 3 years, vessels with compromised runoff (scores ≥5) had significantly lower ulcer healing and a lower limb salvage rate (Table). Patencies were significantly worse in patients with a runoff score ≥5 (Table). Occlusion was correlated with major limb loss (p < 0.05). (Table)
CONCLUSIONS: Pedal runoff score can easily identify those patients who will not achieve ulcer healing and limb salvage after tibial intervention. Defining such subgroups will allow stratification of the patients and appropriate application of interventions.

Table 1

<table>
<thead>
<tr>
<th>Runoff Score</th>
<th><5</th>
<th>≥5</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Limbs at Risk</td>
<td>78 (35%)</td>
<td>142 (65%)</td>
<td>–</td>
</tr>
<tr>
<td>MACE (%)</td>
<td>2 (3%)</td>
<td>2 (1.4%)</td>
<td></td>
</tr>
<tr>
<td>MALE (%)</td>
<td>13 (16%)</td>
<td>60 (42%)</td>
<td></td>
</tr>
<tr>
<td>Conversion to open bypass within 3 months (%)</td>
<td>2</td>
<td>10 (7%)</td>
<td></td>
</tr>
<tr>
<td>Patient survival (% by life table)</td>
<td>68%</td>
<td>62%</td>
<td></td>
</tr>
<tr>
<td>Minor Amputation (Toe and TMA) (% of n)</td>
<td>7 (8%)</td>
<td>24 (16%)</td>
<td></td>
</tr>
<tr>
<td>Major Amputation (BKA and AKA) (% of n)</td>
<td>2 (3%)</td>
<td>43 (30%)</td>
<td></td>
</tr>
<tr>
<td>Primary Patency (% by life table)</td>
<td>81%</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Assisted Primary Patency (% by life table)</td>
<td>73%</td>
<td>58%</td>
<td></td>
</tr>
<tr>
<td>Secondary Patency (% by life table)</td>
<td>7</td>
<td>58%</td>
<td></td>
</tr>
<tr>
<td>Limb Salvage (% by life table)</td>
<td>82%</td>
<td>36%</td>
<td></td>
</tr>
<tr>
<td>Clinical success (% by life table)</td>
<td>43%</td>
<td>39%</td>
<td></td>
</tr>
</tbody>
</table>

Mean ± SEM at three years follow up
MP38. Patterns of Femoropopliteal Recurrence After Endoluminal Therapy: Does Routine Stenting of the Entire Diseased Artery Decrease the Incidence of Clinically Significant Recurrence?

Misaki Kiguchi, MD, MBA, Luke Marone, MD, Rabih Chaer, MD, Justine Kim, Zhen Yu Shi, MD, Rolando Celis, MD, Michel S. Makaroun, MD, Robert Rhee, MD

University of Pittsburgh Medical Center, Pittsburgh, PA

OBJECTIVE: To determine the incidence and characteristics of recurrent disease after femoropopliteal angioplasty, following either selective or routine stenting of diseased site(s).

METHODS: Retrospective analysis of a prospectively maintained database for femoropopliteal interventions from 6/03 to 7/10 was performed. Interventions during this period were from a single institution, followed at 1, 3 and 6 months after initial intervention and on a semiannual basis thereafter with clinical examination and duplex ultrasound. Two groups were identified, Group RS (all diseased areas are routinely stented) versus Group SS (selective stenting for only segments which exhibited compromised flow from residual stenosis or significant dissection). Those patients who developed recurrent symptoms (claudication, rest pain, etc.), decrease in ABI (>0.2), or duplex documentation of a significant (>80%) recurrent stenosis, underwent reintervention. Patient demographics, comorbidities, TASC II classification, run off, and degree of calcification (none, mild, moderate, severe) at initial intervention were recorded. Time to re-intervention and recurrence pattern were recorded for both groups.

RESULTS: 746 endovascular interventions in 447 patients were performed during the study period. Total recurrence rate, including bypass, amputation, and asymptomatic occlusion after initial intervention, was 36.48% (Group SS = 42.9%, Group RS = 33.1%, p = 0.04). Of all initial interventions, 182 endovascular re-interventions in 165 patients for recurrent femoropopliteal disease were identified (Group SS = 70, Group RS = 95). No differences were noted among the groups in terms of gender, comorbidities, initial TASC II classification, run off, calcification scores, or statin/clopidrogel use. Time to recurrence was not different between the RS and SS groups. TASC II classification, run off score, and degree of calcification were not different between the two groups (Table 1). Although not statistically significant, analysis of recurrence pattern demonstrated denovo stenosis was more common in the SS group (50.0% vs. 34.7%, p = 0.06).
CONCLUSION: Patients treated with selective stenting had no difference in time to recurrence and recurrence pattern compared to routine stenting.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Group SS n = 70</th>
<th>Group RS n = 95</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrence time (in days)</td>
<td>245.5 (18–1078)</td>
<td>289.0 (27–2022)</td>
<td>0.07</td>
</tr>
<tr>
<td>TASC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>18/69 (26.1%)</td>
<td>17/94 (18.1%)</td>
<td>0.41</td>
</tr>
<tr>
<td>B</td>
<td>17/69 (24.6%)</td>
<td>33/94 (35.1%)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>13/69 (18.8%)</td>
<td>19/94 (20.2%)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>21/69 (30.4%)</td>
<td>25/94 (26.6%)</td>
<td></td>
</tr>
<tr>
<td>Recurrence pattern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prior intervention site</td>
<td>58/70 (82.9%)</td>
<td>76/95 (80.0%)</td>
<td>0.69</td>
</tr>
<tr>
<td>marginal</td>
<td>18/70 (25.7%)</td>
<td>36/95 (37.9%)</td>
<td>0.13</td>
</tr>
<tr>
<td>denovo</td>
<td>35/70 (50.0%)</td>
<td>33/95 (34.7%)</td>
<td>0.06</td>
</tr>
<tr>
<td>Runoff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>good</td>
<td>30/70 (42.9%)</td>
<td>46/95 (48.4%)</td>
<td>0.59</td>
</tr>
<tr>
<td>compromised</td>
<td>29/70 (41.4%)</td>
<td>32/95 (33.7%)</td>
<td></td>
</tr>
<tr>
<td>poor</td>
<td>11/70 (15.7%)</td>
<td>17/95 (17.9%)</td>
<td></td>
</tr>
<tr>
<td>Calcification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>6/70 (8.6%)</td>
<td>12/95 (12.6%)</td>
<td>0.51</td>
</tr>
<tr>
<td>mild</td>
<td>30/70 (42.9%)</td>
<td>34/95 (35.8%)</td>
<td></td>
</tr>
<tr>
<td>moderate</td>
<td>22/70 (31.4%)</td>
<td>37/95 (39.0%)</td>
<td></td>
</tr>
<tr>
<td>severe</td>
<td>12/70 (17.1%)</td>
<td>12/95 (12.6%)</td>
<td></td>
</tr>
</tbody>
</table>
 Mp39. Clinical Presentation and Outcome Following Failed Endovascular and Open Revascularization in Patients with Chronic Limb Ischemia
Hasan H. Dosluoglu, MD1, Purandath Lall, MBBS1, Linda M. Harris, MD2, Maciej L. Dryjeski, MD2
1VA Western NY Healthcare System, SUNY at Buffalo, Buffalo, NY, 2SUNY at Buffalo, Buffalo, NY

OBJECTIVES: Prior endovascular interventions have been reported to have a negative impact on the final outcomes. The goal of our study was to compare the clinical presentation of patients who failed endovascular (EV) and Open revascularizations (OR), and impact of the initial intervention on final outcomes.

METHODS: From 06/2001–10/2010, 216 patients (237 limbs; 66 DC, 171 CLI) presented with failed OR of EV revascularization for chronic limb ischemia. Clinical presentation, re-interventions, patency and limb salvage (LS) rates and final outcomes were analyzed.

RESULTS: The EV group (N = 143) had more diabetes (44% vs. 57%, P = 0.048), ulcer (26% vs. 38%, P = 0.039) while the OR group (N = 94) had more multilevel revascularization (59% vs. 33%, P < 0.001). Presentation at the time of failure was non-limb threatening ischemia in 70% of DC, 16% of CLI patients (P < 0.001), with no difference in those initially treated with EV or OR. In CLI, more presented with acute limb ischemia in OR than EV group (23% vs. 10%, P = 0.024). Early failure (<3 months) occurred in 15% of DC and 36% of CLI patients, and was more in OR than EV groups (30% vs 7% for DC, P = 0.011, and 71% vs.38% for CLI, P = 0.024). Overall, 195 (82%) had attempted re-interventions (79% in DC, 85% in CLI P = 0.245). In DC patients, 47% of OR had open ± EV, 26% had EV; 32% of EV had open ± EV, 47% had EV reinterventions. In CLI patients, 43% of OR had open ± EV, 39% had EV; 16% of EV had open ± EV, 70% had EV reinterventions. A patent revascularized limb was achieved in 66% of OR, and 92% of EV groups (P < 0.001). Patency and LS were significantly better in the EV group, mainly due to the difference in CLI patients, while survival was identical (Table).

CONCLUSIONS: Clinical presentation following failed revascularization is determined by the initial indication (DC vs. CLI). CLI patients are more likely to present with acute limb ischemia, and within 3 months of revascularization, especially following open revascularization. Endovascular re-interventions play a significant role in management of patients with failed revascularization, and EV failure is associated with better outcomes than those following Open revascularization.
Table 1: Patency, Limb Salvage and Survival After Failure of EV or Open Revascularization

<table>
<thead>
<tr>
<th>All limbs</th>
<th>24 mo PP</th>
<th>24 mo SP</th>
<th>24 mo Overall (tertiary) patency</th>
<th>24 mo LS (*CLI only)</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open (94)</td>
<td>28 ± 5%</td>
<td>32 ± 6%</td>
<td>55 ± 6%</td>
<td>63 ± 5%</td>
<td>69 ± 5%</td>
</tr>
<tr>
<td>EV (143)</td>
<td>42 ± 5%</td>
<td>58 ± 5%</td>
<td>78 ± 4%</td>
<td>84 ± 4%</td>
<td>73 ± 4%</td>
</tr>
<tr>
<td>P value</td>
<td>0.001</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.737</td>
</tr>
</tbody>
</table>

Attempted revascularization only

Open	44 ± 8%	50 ± 8%	69 ± 6%	64 ± 6%	67 ± 6%
EV	56 ± 6%	75 ± 5%	93 ± 3%	84 ± 4%	73 ± 5%
P value	0.011	<0.001	<0.001	0.001	0.952

6:00 pm – 8:00 pm

ANNUAL BANQUET

(XS Nightclub)
Saturday, March 17

7:30 am – 12:30 pm REGISTRATION DESK
(Promenade)

7:30 am – 12:00 pm SPEAKER READY ROOM
(Schubert)

7:30 am – 8:30 am EXHIBITION HALL HOUR
(Encore 1-3)

7:30 am – 8:30 am CONTINENTAL BREAKFAST WITH INDUSTRY IN EXHIBIT HALL
(Encore 1-3)

7:30 am – 8:30 am SPECIAL INTEREST GROUP (SIG)—BREAKFAST SESSION
(Chopin 2)

Challenging Cases: Thoracic Aortic
Moderated by: Thomas C. Bower, MD
Evan Lipsitz, MD

SPEAKERS:
Neil Moudgill, MD
Thomas Jefferson University Hospital, Philadelphia, PA
Peter Rossi, MD
Medical College of Wisconsin, Milwaukee, WI
Francis J. Caputo, MD
Washington University School of Medicine, St. Louis, MS
Christopher Smolock, MD
Methodist Hospital, Houston, TX
Ramyar Gilani, MD
Ben Taub General Hospital, Houston, TX
Michael Malinowski, MD
Loyola University Medical Center, Maywood, IL
7:30 am – 8:30 am SPECIAL INTEREST GROUP (SIG)—BREAKFAST SESSION (Chopin 3)

Challenging Cases: Venous & Dialysis Access
Moderated by: Robert B. McLafferty, MD
Joseph S. Giglia, MD

SPEAKERS:
Francesco Aiello, MD
New York Presbyterian Hospital, Columbia University, New York, NY
Ryan Messiner, MD
St. Johns/University of Oklahoma, Tulsa, OK
Erika Ketteler, MD
Albuquerque Murphy VA Medical Center, Albuquerque, NM
William Lee, MD
Keck Hospital of the University of Southern California, Los Angeles, CA
Kevin Taubman, MD
University of Oklahoma College of Medicine, Tulsa, OK
Michelle Martin, MD
Beth Israel Deaconess Medical Center, Boston, MA
OBJECTIVES: The impact of proton pump inhibitor (PPI) administration on the antiplatelet effect of clopidogrel remains controversial. Studies suggest that mechanistic interactions between these medications may lead to higher rates of adverse cardiac events after myocardial infarction or coronary intervention. The objective of this study is to evaluate the effects of concurrent PPI and clopidogrel administration on outcomes after peripheral endovascular interventions.

METHODS: Retrospective review of a prospectively maintained database identified patients undergoing angioplasty and stenting (PTA+S) of the superficial femoral artery (SFA) for lifestyle-limiting claudication. Patients with critical limb ischemia, multilevel disease, and those undergoing atherectomy or angioplasty without stenting were excluded. Medical record review confirmed post-intervention administration of clopidogrel and identified patients concurrently prescribed a PPI. Univariate analyses (Wilcoxon, chi-square) were performed to compare demographics, lesion characteristics, complication rates, and outcome measures. Patency comparisons were made with Cox-PH multivariable models and Kaplan-Meier function.

RESULTS: 109 limbs were treated in 103 patients. All were prescribed clopidogrel for one month; concurrent PPI use (+PPI) was identified after 42 (38.5%) interventions. Compared to −PPI patients, +PPI patients had no statistically significant differences in demographics, co-morbidity prevalence (including diabetes, renal insufficiency, heart failure, coronary disease, or smoking status), lesion length, degree of stenosis, or runoff. There were no cases of immediate thrombosis in either group. There were more early failures in +PPI patients, with reduced 6-month (87.7 ± 5.8% vs. 96.3 ± 2.6%) and 1-year (74.2 ± 7.9% vs. 90.2 ± 4.2%) primary patency. Throughout follow-up there were more instances of patency loss (50% vs. 42%) in +PPI patients, and a trend towards reduced primary patency among +PPI, although this did not achieve statistical significance (P = 0.45). By multivariate analysis of risk factors for patency loss as well as PPI status, only chronic occlusion was an independent predictor of primary patency loss (P = 0.023; HR:1.54 [95% CI:1.1–2.3]).

* Peter B. Samuels Finalist.
CONCLUSIONS: The clinical significance of the clopidogrel-PPI interaction is a controversial topic that has been the subject of numerous studies in the cardiology literature. This is the first report to examine this medication interaction after peripheral intervention. Results are notable for a trend towards more early failures and reduced patency in patients prescribed clopidogrel and PPIs. Further studies are needed to clarify this phenomenon, particularly given the high prevalence of PPI use at the time of intervention.
Statin Therapy Is Associated with Improved Clinical Outcomes in Patients with Symptomatic Peripheral Arterial Disease Undergoing Endovascular Intervention

Francesco A. Aiello, MD1, Gisberto Evangelisti, MD2, Ashley Graham, BS2, Andrew J. Meltzer, MD1, James F. McKinsey, MD3, Darren B. Schneider, MD2

1New York Presbyterian Hospital: Columbia/Cornell Medical Center, New York, NY, 2New York Presbyterian Hospital: Cornell Medical Center, New York, NY, 3New York Presbyterian Hospital: Columbia University Medical Center, New York, NY

OBJECTIVE: Statin therapy has proven clinical benefits in patients undergoing endovascular interventions for cerebral, abdominal and renal artery disease, and critical limb ischemia (CLI). The purpose of this study is to determine the effects of statin therapy on all patients undergoing peripheral intervention for symptomatic peripheral artery disease (PAD).

METHODS: A retrospective review of all patients undergoing peripheral endovascular intervention for symptomatic PAD. All patients on a statin at the time of intervention were placed in the statin therapy group. Demographics, symptom status (claudication or CLI), lesion morphology, primary patency, primary assisted patency, secondary patency and overall mortality were compared between these two groups. Analysis was performed using multivariate regression and Kaplan-Meier analysis.

RESULTS: 955 patients (1110 number of limbs) underwent endovascular intervention for symptomatic PAD between 2004 and 2009. 412 patients were treated for claudication and 543 patients were treated for CLI. 522 patients (54%) were on a statin, statin therapy group, and 433 patients were not on statin therapy at the time of intervention. The statin therapy group had significantly higher rates of diabetes mellitus, hypercholesterolemia, coronary artery disease, congestive heart failure, history of myocardial infarction, and previous coronary artery bypass surgery. The two groups had similar lesion length, location, TASC classification, and intervention. The statin therapy group had no difference in primary patency rates but did have significantly improved primary assisted (77.8% vs. 69.1%; p = 0.006) secondary patency (83.2% vs. 74.6%; p = 0.002), limb salvage (86.0% vs. 72.8%; p = 0.001) and overall mortality rates at 12, 24, and 36 months. Claudicants on statin therapy had improved mortality rates at 12 months but no significant difference in primary, primary assisted, or secondary patency rates at 12, 24, or 36 months while the CLI patients on statin therapy had significantly improved primary assisted, secondary patency, limb salvage and mortality rates at all time periods.
CONCLUSION: Patients receiving statin therapy at the time of intervention for treatment of symptomatic PAD have a statistically significantly improvement in patency, limb salvage and mortality rates seen at up to 36 months. The benefits of statin therapy were most pronounced in the CLI subgroup and patients in the claudication subgroup had improved survival, but not improved patency. Our findings suggest that statin therapy should be part of the treatment regimen for all patients undergoing intervention for PAD.
OBJECTIVES: To evaluate the technical feasibility and to illustrate the clinical workflow of using C-arm Computed Tomography (CT) (angio CT) and fluoroscopic needle guidance software, for percutaneous access and embolization of type-II endoleak after endovascular aortic aneurysm repair (EVAR).

METHODS: Between July 2010 and June 2011, fourteen cases of type II endoleak after EVAR were treated in our hybrid operating room using C-arm CT (Syngo DynaCT®, Siemens AG, Forchheim, Germany) and fluoroscopic needle guidance software (Syngo iGuide®, Siemens AG). DynaCT® images were acquired using our robotic C-arm system (Artis Zeego®, Siemens AG). After merging with the pre-op CT demonstrating the endoleak, a virtual needle path was designed using iGuide®. We describe a clinical workflow using DynaCT® and iGuide® as a stepwise process to successfully access the aneurysm sac in a controlled fashion, as outlined in Figure 1. Where possible, selective catheterization and embolization of the communicating vessel was done with coils and/or injection of Onyx® Liquid Embolic System (ev3 Endovascular Inc., Plymouth, MN). Obliteration of flow in the sac was otherwise performed by injection of Onyx®.

Figure 1: An illustration of clinical workflow about using DynaCT® and iGuide® software for percutaneous access of type II endoleak after EVAR.
RESULTS: The mean age was 75 years (Range 64–86). All sac punctures were done percutaneous at the first attempt. Direct cannulation of the communicating vessel was done in two patients (15.4%). Final sac angiogram and post-operative duplex at 24 hours demonstrated no further endoleaks in all but one patient (92.8% success). Early in our experience, one patient underwent a non-guided sac puncture due to non-availability of the iGuide®, which resulted in puncture of the endograft, leading to hemoperitoneum needing emergent laparotomy.

CONCLUSIONS: Percutaneous sac access with real-time three-dimensional fluoroscopic needle guidance is a minimally invasive treatment for complex type II endoleaks after EVAR. Although direct catheterization of the communicating vessel is challenging due to the fluid/thrombus in the sac, safe access of the sac and obliteration of flow can be successfully achieved.
MP41. Does Kidney Transplantation to Iliac Artery Deteriorate Ischemia in the Ipsilateral Lower Extremity with Peripheral Arterial Disease?
Ashley Northcutt, MD, Gazi Zibari, MD, Wayne W. Zhang, MD
Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA

OBJECTIVES: It was reported that steal syndrome caused by transplanted kidney may result in limb threatening ischemia in pediatric patients. However, the steal phenomenon and its clinical significance have not been well defined in adults. It has been a concern that “blood steal” from iliac artery by transplanted kidney may deteriorate ischemia in the ipsilateral lower extremity with underline peripheral arterial disease (PAD). This study was designed to investigate the progression of lower extremity ischemia following kidney transplantation to iliac artery.

METHODS: A retrospective chart review of all renal transplants completed at a university teaching medical center from January 2005 to December of 2010 was performed. Patients were excluded if renal artery was anastomosed to the aorta. A total of 219 patients underwent successful kidney transplantation to the common, external, or internal iliac artery. Data including pre- and post-transplantation limb ischemic changes, conventional angiography, CT angiography (CTA), and MR angiography (MRA) of the ipsilateral lower extremity were collected and analyzed.

RESULTS: Of the 219 patients with successful renal transplantation to the common, external or internal iliac arteries, 143 were male and 76 were female. The median age was 52 years, ranging from 28 to 77 years. Sixty-nine patients underwent preoperative conventional angiogram, CTA, or MRA to rule out PAD. Thirty-eight were diagnosed to have ipsilateral lower extremity arterial disease, including 30 mild, 4 moderate and 4 severe arterial stenosis/occlusion. No arterial revascularization was performed. Seven patients were symptomatic preoperatively and 8 became symptomatic after kidney transplantation. In the 7 with preoperative lower extremity ischemia, symptoms/signs remained same in 6 and improved in 1. Of the 8 patients who developed ischemic symptoms after transplantation, 4 had claudication and 4 sustained chronic foot ulcers or toe gangrene 12 months later. The ulcers were healed in 2 patients with wound care, and toe amputation was performed in the rest 2. No major amputation above the level of mid-foot was required during the follow-up between 6 to 48 months.

CONCLUSIONS: “Blood steal” from iliac artery by transplanted kidney does not significantly deteriorate ischemia in adults with lower extremity PAD. Late developed ischemic complications maybe due to the progression of underline arterial disease. Further study comparing limb ischemia in renal failure patients with and without kidney transplantation will be performed.
INTRODUCTION: Inter-luminal pressure gradient (IPG) the pressure between the true and false lumen in Type B Aortic Dissections (AD) is considered of clinical relevance with highly elevated false lumen to true lumen pressure ratio indicating risk of false lumen expansion and rupture. Non-invasive IPG quantification would be beneficial as invasive pressure catheter measurements pose additional risk to the patient, and may serve as a predictive measure for poor outcome of Type B aortic dissections, which are managed conservatively.

METHODS: From 40 AD patients undergoing MRI examinations at the Methodist Acute Aortic Treatment Center, 10 acute AD were selected for further analysis. All examinations included an clinical pcMRI study (Figure 1a) from which false lumen and true lumen blood velocities were quantified. Both true and false lumens were automatically segmented and maximum IS extension and contraction were quantified. IPG was derived by applying the Bernoulli equation. Intra-arterial septum (IS) motion was quantified and correlated with IPG. Pearson correlation coefficient between IPG and maximum IS extension, contraction and their ratio was calculated.

RESULTS: In these type B dissections true lumen velocity range was 40 cm/sec to 89 cm/sec (62 ± 16 cm/sec), false lumen velocity was 7 cm/sec to 36 cm/sec (18 ± 11 cm/sec) corresponding to an average static false lumen/true lumen pressure ratio of 11.9 (range: 4.6 to 18.8). IS extension was 2.4 to 5.5 mm (3.5 ± 0.9 mm), IS contraction was 0.8 to 6.9 mm (3.0 ± 1.9 mm). IPG correlated with maximum IS extension (R = 0.76) and inversely with maximum IS contraction (R = -0.51). Strength of correlation was highest with IS extension/contraction ratio (R = 0.81, Figure 1).
CONCLUSIONS: IPG quantified non-invasively with pcMRI strongly correlates with IS mobility in acute AD. Static false lumen pressures were on average one order of magnitude higher than those found in the true lumen. Non-invasive monitoring with pcMRI may be applied at follow-up examinations to correlate false lumen expansion and thrombus formation with IPG.
MP43. Prosthetic Graft Infections Involving the Femoral Artery—Ten Year Experience
Jeffrey J. Siracuse, MD, Marc L. Schermerhorn, MD, Prathima Nandivada, MD, Kristina A. Giles, MD, Allen D. Hamdan, MD, Mark C. Wyers, MD, Elliot L. Chaikof, MD, PhD, Frank B. Pomposelli, MD
Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA

OBJECTIVES: Prosthetic graft infection is a major and feared complication of peripheral vascular surgery. We set forth to investigate our institution’s experience for bypasses involving the femoral artery.

METHODS: A retrospective cohort single institution review of prosthetic bypass grafts involving the femoral artery from 2001–2010 looked at patient demographics, BMI, comorbidities, indications, location of bypass, type of prosthetic material, case urgency, previous ipsilateral bypasses or percutaneous interventions, and evaluated mortality, amputations, and graft infections.

RESULTS: There were 421 prosthetic grafts identified. The graft infection rate was 4.3% with a median post-operative time to presentation of 90 days. Multivariate analysis shows that redo bypass (OR 5.6, 95% CI 2.2–14.6), active infection at time of bypass (OR 4.8, 95% CI 1.7–13.1), female gender (OR 4.2, 95% CI 1.5–12.0), and diabetes (OR 3.9, 95% CI 1.3–12.1) were significant predictors of graft infection. Redo bypasses made up 55% of graft infections. Graft infection was predictive of major lower extremity amputation (OR 10.6, 95% CI 3.7–30.2), as were concurrent bypass (OR 4.2, 95% CI 1.2–15.1) and preoperative tissue loss (OR 3.8, 95% CI 1.5–9.7). Graft infection did not predict mortality, however chronic renal insufficiency (OR 2.2, 95% CI 1.5–3.1), tissue loss (OR 1.4, 95% CI 1.0–1.9), and age (OR 1.2, 95% CI 1.1–1.4) were predictive. Infected grafts were removed 77% of the time. S. epidermidis (39%) and Methicillin-sensitive S. aureus (28%) were the most common pathogens isolated.

CONCLUSION: Redo, female, diabetic, and patients with an active infection are at a higher risk for graft infection and therefore higher rates of major extremity amputation, but are not at increased risk of mortality. Alternate sources of vein and endovascular interventions should be used when available in high risk patients.
Isolated Dissection of the Celiac and Superior Mesenteric Arteries
Jill Zink, MD, Victor Erzurum, MD, Robert Netzley, MD, Charudutt Paranjape, MD, Dennis Wright, MD
Akron General Medical Center, Akron, OH

OBJECTIVES: Isolated dissection of the mesenteric circulation is an unusual occurrence. Previous isolated case reports and small series have varied in treatment modalities. We report a series of 6 patients with local dissection of the mesenteric circulation. In each case conservative management was attempted as the primary mode of therapy.

METHODS: We reviewed hospital and patient follow-up records for a series of 6 patients who presented with isolated mesenteric dissections over the last 5 years. Conservative management with anticoagulation and observation was instituted on diagnosis. Records were reviewed for initial presentation and success of therapy in both the acute and long-term setting as well as noted complications.

RESULTS: Average age at presentation was 54 years (range 44–61 years). Five patients were male. One patient had prior history of PVD. HTN was present in 5 patients. In all cases the diagnosis was made by CTA. Presenting symptoms were abdominal pain (6), nausea/vomiting (4), chest pain (3), and food intolerance (3). In 4 cases the dissection was preceded by a severe coughing or retching episode. Four cases were isolated to the celiac artery and 2 cases showed extension into the SMA. All 6 cases showed good visceral perfusion initially. Two cases showed mild aneurysmal dilation. All cases were initially managed with heparin. One patient had progressive symptoms of bowel ischemia with failed interventional/operative management and bowel resection was required. Of the remaining 5 patients, all were treated with conversion to coumadin (4) or ASA/Plavix (1). Four of five patients had complete resolution of symptoms and no further degenerative changes. One patient with both aneurysm and persistent cachexia has been considered for operative management but is not a candidate secondary to severe CHF. In the remaining 4 patients, follow-up CT scans have shown no progression of dissection (2) and partial resolution (2).

CONCLUSIONS: Isolated mesenteric dissection appears to occur at a younger age and without the hallmark symptoms of PVD. Conservative management of isolated mesenteric dissection appears both safe and effective for relief of symptoms. Ongoing follow-up with CT scanning is indicated for assessment of degenerative changes. Operative management should be considered for persistent symptomatology but may be associated with increased morbidity.

Bhagwan Satiani, MD, MBA, Mika Matthews, MD, Joann M. Lohr, MD

1The Ohio State University, Columbus, OH, 2Lohr Surgical Specialists, LLC, Cincinnati, OH

OBJECTIVE: To survey the SVS membership with regard to practice trends related to work effort, employment status, practice ownership, endovascular cases and anticipated changes in practice in the near future.

METHODS: A survey questionnaire was developed to gather information about member demographics and practice, hours worked, full-time (FT) or part-time (PT) status, employment status, practice ownership, competition for referrals, proportion of endovascular versus open procedures and anticipated changes in practice in the next 3 years. We utilized Survey Monkey and distributed the survey to all Vascular Surgeon (VS) members of the Society for Vascular Surgery (SVS).

RESULTS: The response rate was 207 of 2,230 (10.7%). Two-thirds are in private practice and 21% are in solo practice. 24% are employed by hospitals/health systems. Vascular Surgeons under the age of 50 were more likely to be in an exclusively vascular surgery practice compared to VS over the age of 50 (p < 0.0003). Sixty-eight (32.7%) of the physicians were between 50–59 years old, 186 (90.3%) were men, 192 (92.8%) worked FT (>36 hours of patient care per week) and almost two-thirds worked >60 hours/week. Those in physician owned practices worked >40 hours of patient care/week more often than FT employed VS (p < 0.012). Younger VS (<age 50) more frequently reported >50% of their workload being endovascular compared to older VS (age >50) (p < 0.001). Eighty percent of FT VS planned to continue their current practice over the next three years. Of the 43.6% indicating loss of referrals, 82% pointed to cardiologists as the competition.

CONCLUSION: The current workforce is predominantly male, full-time and 1/3 is between 50–59 years old. Younger VS (< age 50) are more likely to exclusively practice VS and have a higher caseload of endovascular procedures. Those in physician owned practices are more likely to put in >40 hours of patient care/week than FT employed VS. Longitudinal surveys of SVS members are imperative to help tailor the educational, training and practice management offerings, guide governmental activities, advocate for issues important to members, improve branding initiatives and sponsor workforce analyses.
9:45 am – 10:45 am TO BE OR NOT TO BE – SURGEONS AS HOSPITAL EMPLOYEES (Encore 4-8)
Moderators: Russell H. Samson, MD
W. Charles Sternbergh, III, MD

Con Debater: Why You Should Always Try and Remain Independent
Enrico Ascher, MD
Maimonides Medical Center, Brooklyn, NY

Pro Debater: Why You Should Be Employed
George H. Meier, III, MD
University of Cincinnati, Cincinnati, OH

10:45 am – 11:30 am KARMODY POSTER COMPETITION—Final Round (Encore 4-8)
Moderated by: Mark G. Davies, MD
MP46. Analysis of Extra-Vascular Closure Device After Transbrachial Artery Access

Aleem K.H. Mirza, BS, Samuel N. Steerman, MD, Jonathan A. Higgins, MD, Sirisha Mushti, RA, Jean Panneton, MD
Eastern Virginia Medical School, Norfolk, VA

OBJECTIVES: The brachial artery has become an invaluable route for endovascular procedures and imaging. Extra-vascular closure devices (eVCD) have been developed to obtain hemostasis after trans-femoral artery access, but other sites of access have not been analyzed. We seek to determine if eVCD are safe and effective after transbrachial access.

METHODS: A retrospective analysis of patient’s undergoing transbrachial access from November 2005 to February 2011 was performed. Hemostasis at the access site was achieved using manual compression or an eVCD as selected by the surgeon. History, operative data, and complications were recorded. Thrombotic (brachial artery thrombosis, embolism, limb ischemia) and hemorrhagic complications (bleeding, hematoma requiring intervention, and pseudoaneurysm) were compiled and categorized. Total major adverse effects (MAEs) encompassed brachial artery thrombosis, limb ischemia, additional surgery, and 30-day mortality. Minor complications were defined as bleeding not requiring surgery or transfusion, increased pain, additional compression and transient sensory nerve deficit. Analysis was performed using the student’s t-test, the Mann-Whitney test and chi-square. Relative risk was computed when applicable.

RESULTS: Procedures with brachial artery access were performed on 148 patients and 154 limbs. Manual compression (MC) was performed on 134 brachial arteries and 20 arteries were controlled with an extra-vascular closure device. Groups were well matched for sex (p = 0.34), race (p = 0.75), smoking (p = 0.73), anticoagulation (p = 0.71), and diagnostic vs. therapeutic procedure (p = 0.61). The complications profile is shown:

<table>
<thead>
<tr>
<th></th>
<th>MC (n = 134)</th>
<th>eVCD (n = 20)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor complications</td>
<td>14 (10%)</td>
<td>1 (5%)</td>
<td>0.45</td>
</tr>
<tr>
<td>Device Failure</td>
<td>N/A</td>
<td>1 (5%)</td>
<td>N/A</td>
</tr>
<tr>
<td>Thrombotic Complication</td>
<td>6 (4%)</td>
<td>0</td>
<td>0.43</td>
</tr>
<tr>
<td>Hemorrhagic Complication</td>
<td>3 (2%)</td>
<td>1 (5%)</td>
<td>0.47</td>
</tr>
<tr>
<td>Major Adverse Events (MAE)</td>
<td>9 (7%)</td>
<td>1 (5%)</td>
<td>0.77</td>
</tr>
</tbody>
</table>
Factors that were associated with an increased incidence of thrombosis after MC were female sex (p = 0.07) and sheath size >6 Fr (p = 0.008). Diagnostic procedures had a decreased risk of brachial artery thrombosis (p = 0.04) as all 6 instances of thrombosis occurred following an interventional procedure (Relative Risk, RR: 9.1). Age, race, and BMI had no effect on complications rate in either hemostatic procedure.

CONCLUSIONS: Extra-vascular closure devices are safe for use in the brachial artery following an endovascular procedure. They may be best applied in patients that are high risk for thrombosis, such as, females, patients undergoing an interventional procedure or access with a sheath >6 Fr.
MP47. Ultrasound Navigation for Endovascular Aortic Intervention

Gabriel Herscu, MD, Jay Mung, MS, John Moos, MD, Sukgu Han, MD, Grace Huang, MD, Jesse Yen, PhD, Fred A. Weaver, MD
University of Southern California, Los Angeles, CA

OBJECTIVES: Radiation exposure and nephrotoxic contrast injections are inherent to conventional endovascular treatment regimens in aortic disease. Contrast nephropathy is estimated to occur in up to 50% of patients undergoing administration of contrast. Radiation exposure during endovascular aortic intervention is significant and the long-term effects have not been fully realized. Our objective was to determine navigational precision of this novel technique.

METHODS: We designed a navigational system for placement of aortic endovascular prostheses using an ultrasound guidance system with a graphical user interface (GUI). Our system utilizes an endovascular ultrasound transmitter passed into the aorta on the tip of a catheter and continuously tracked via trilateration with external ultrasound receivers. Graphical representation of catheter location coupled in 3-D with preoperative CTA is represented on a monitor along with a virtual aortoscopic view looking forward from the catheter tip. This procedure was performed in a pig model. Movement of the catheter via ultrasound guidance was compared using correlation plot with fluoroscopic measurements. Ultrasound-guided catheter movement was also compared to aortic centerline as determined by preoperative CTA. After data acquisition, a covered, self-expanding stent was advanced and deployed at the inferior edge of the right renal artery as determined by the ultrasound guidance system. The pig was then sacrificed and the aorta opened in-situ to evaluate accuracy of stent placement in relation to the right renal artery orifice.

RESULTS: Compared with fluoroscopy data, ultrasound navigation showed excellent concordance (RMS = 0.6 mm, \(R^2 > 0.99 \)). Tracking of catheter position showed a mean difference of 2.15 mm when compared to aortic centerline for all recorded catheter tip positions. At aortic dissection, the stent was found within 2 mm of the renal orifice.

CONCLUSIONS: Ultrasound navigation in endovascular aortic intervention is feasible and precise when compared to fluoroscopic catheter manipulation. Its virtual-reality graphical user interface allows intuitive, real-time manipulation of endovascular devices, while avoiding the damaging effects of radiation and contrast administration.
Representative 3-Dimensional and aortoscopic views of the pig aorta as seen on user interface. Note left and right renal arteries visible on aortoscopic view.
Purpose: This study evaluates the feasibility of a low dose intra-arterial contrast computed tomography angiography (IA-CTA) protocol to plan endovascular repair with fenestrated and branched endografts in patients with severe renal dysfunction and complex aortic aneurysms.

Methods: Five high-risk patients underwent IA-CTA prior to endovascular repair of 3 thoracoabdominal (TAAA) and 2 pararenal aortic aneurysms with fenestrated and branched endografts. All patients had stage IV chronic kidney disease with baseline serum creatinine (sCr) > 1.7 mg/dL and age > 70 years, which corresponded to an estimated glomerular filtration rate (eGFR) of <30 mL/min/1.73 m². Three patients had diabetes. IA-CTA protocol required 5 Fr transfemoral flush catheter positioned in the proximal descending thoracic aorta. IA-CTA was obtained using multi-slice helical scanner with total of 40 ml of non-ionic contrast agent diluted in 80 ml of normal saline and injected at 8 ml/sec for 15 seconds. End-points were feasibility of device design and procedure planning using IA-CTA images with centerline of flow measurements and changes in renal function.

Results: IA-CTA was obtained 7 ± 6 days prior to endovascular repair. In two patients with contained ruptured TAAAs urgent repair was performed within <24 hours of IA-CTA (Figure 1). Imaging quality was excellent in all studies allowing procedure planning and device design. Endovascular repair was successfully performed using fenestrated and branched endografts in all patients, with no mortality. There were no changes in renal function parameters after IA-CTA, but three patients had rise in sCr after the endovascular repair, returning to baseline values within 3 months (Figure 2). After a median follow up of 6 months, all patients had stable renal function within baseline values.
CONCLUSION: Low-dose IA-CTA was successful in this pilot study, providing excellent imaging quality for device design in patients treated by fenestrated and branched endografts for complex aortic aneurysms. This technique may be useful to plan complex endovascular procedures in select patients with severe renal dysfunction.
MP49. Advanced Techniques for Retrieval of Malpositioned Inferior Vena Cava Filters

Robert T. Lancaster, MD, MPH, Christopher J. Kwolek, MD, Junaid Y. Malek, MD, Glenn M. LaMuraglia, MD, Virendra I. Patel, MD, Mark F. Conrad, MD, MMSc
Massachusetts General Hospital, Boston, MA

OBJECTIVE: Although most inferior vena cava (IVC) filters placed today are designed for temporary use, published rates of retrieval remain low. Prolonged dwelling times and filter malposition can make extraction by standard techniques challenging. This series details our experience with several advanced techniques that facilitate removal of malpositioned filters.

METHODS: We identified fourteen patients between 1/1/2009 and 8/31/2011 who required adjunctive techniques for filter removal. These techniques included the use of: shaped catheters for snare guidance, deflectable tip wires, deflectable tip sheaths, balloon angioplasty, and grasping forceps.

RESULTS: The average patient age at the time of retrieval was 51.5 years (33–74 years). Twenty-one percent were male. The indication for initial filter placement was prophylaxis in 36%, contraindication to anticoagulation in the setting of DVT/PE in 43%, and failure of anticoagulation in 21%. The filter types included: Bard G2 (67%), Bard Eclipse (8%) and Cook Celect (25%). The average time to filter retrieval was 422 days (86–1962 days). All of the filters were tilted in the IVC and 11 (79%) demonstrated legs that penetrated the IVC on preprocedural imaging. Techniques used to aid in removal of these filters included: snare directed by shaped catheter (79%), deflectable tip sheath (43%), balloon angioplasty (43%), deflectable tip wire (36%), and grasping forceps (29%). Forty-three percent of patients required placement of more than 1 sheath to facilitate removal and 29% of patients required >3 techniques for successful removal. There were no deaths or IVC occlusions identified in follow-up.

CONCLUSIONS: Endovascular removal of most tipped and perforating IVC filters can be safely accomplished by gradually employing a combination of complex retrieval methods. The techniques described represent important adjuncts to the standard snare method, and will allow for a higher retrieval rate in most patients.
OBJECTIVES: The feasibility of robotically-assisted laparoscopic aortic surgery has been adequately demonstrated. The robot represents the next step in the use of minimally invasive surgery. Our clinical experience with robot-assisted aortoiliac reconstruction for occlusive diseases, aneurysms, and hybrid procedures performed using the da Vinci system is herein described.

METHODS: Between November 2005 and March 2011, we performed 200 robot-assisted laparoscopic aortoiliac procedures. 158 patients were prospectively evaluated for occlusive diseases, 36 patients for abdominal aortic aneurysm, two for a common iliac artery aneurysm, two for a splenic artery aneurysm, and two for hybrid procedures. The robotic system was applied to construct the vascular anastomosis, for the thromboendarterectomy, for the aorto-iliac reconstruction with a closure patch, for dissection of the splenic artery, and for the posterior peritoneal suture. A combination of conventional laparoscopic surgeries and robotic surgeries were routinely included. A modified, fully-robotic approach without laparoscopic surgery was used in the last 30 cases in our series.
RESULTS: 193 cases (96.5%) were successfully completed robotically, one patient’s surgery was discontinued during laparoscopy due to heavy aortic calcification. In six patients (3%) conversion was necessary. The thirty-day mortality rate was 0.5%, and non-lethal postoperative complications were observed in nine patients (4.5%).

CONCLUSIONS: Our clinical experience with robot-assisted laparoscopic surgery has demonstrated the feasibility of this technique for aortoiliac vascular and hybrid procedures. The da Vinci robotic system facilitated the creation of the aortic anastomosis, and shortened the aortic clamping time as compared to purely laparoscopic techniques.

Robotic maneuvers are of exceptional value due to their unique ability to combine conventional laparoscopic surgery with stereoscopic 3D magnification and ultra-precise suturing techniques. However, previous laparoscopic aortoiliac experience is necessary before performing robot-assisted procedures in vascular surgery. Robotic surgery offers great potential for future hybrid procedures.
MP51. Accuracy and Utility of 3D Rotational Angiography for Hypogastric and Uterine Artery Embolization

David E. Timaran, MD, Eric B. Rosero, MD, Adriana J. Higuera, MD, M. Shadman Baig, MD, R. James Valentine, MD, Carlos H. Timaran, MD

University of Texas Southwestern Medical Center, Dallas, TX

OBJECTIVES: Digital subtraction angiography (DSA) is the standard imaging method for hypogastric artery (HA) and uterine artery (UA) embolization, but multiple views are frequently required to demonstrate the origin of the target artery, which increases radiation, contrast volume, and procedure time. The purpose of this study was to assess the accuracy and utility of three-dimensional rotational angiography (3D-RA) to select optimal projections and to guide embolization.

METHODS: In a series of 30 pelvic (5 HA and 25 UA) embolizations performed over an 18-month period, 3D-RA using a Philips Allura Xper FD20 system was obtained. 3D-RA was used to select the optimal working projection, which automatically synchronized the position of the C-arm. DSA was obtained to confirm the adequacy of the projection and to produce a road map for embolization.

RESULTS: The sensitivity and specificity of 3D-RA were 96% and 86% to determine optimal projection for embolization. The operative technique for embolization was altered based on 3D-RA in 10 patients (40%); specifically, different guiding microcatheters or hydrophilic wires were used in 6 patients (25%). Based on 3D-RA findings, target artery characteristics could be determined with excellent reliability (kappa = 0.81; 95% CI, 0.57–1.06). Patients undergoing HA and UA embolization based on 3D-RA had 100% technical success and no 30-day morbidity or mortality.

CONCLUSIONS: 3D-RA is accurate in determining the best projection that demonstrates the origin of the hypogastric and uterine arteries and may alter the plan for embolization in 40% of patients. 3D-RA can, in fact, accurately predict imaging projections and indicate the best devices that may facilitate safe and expeditious pelvic embolizations.
MP52. Endovascular Intervention for Hepatic Artery Stenosis After Liver Transplantation
Blake A. Hamby, MD, Hernan A. Bazan, MD, Taylor A. Smith, MD, Edward Bluth, MD, George E. Loss, MD, PhD, W. Charles Sternbergh, III, MD
Ochsner Clinic Foundation, New Orleans, LA

OBJECTIVES: Hepatic artery stenosis (HAS) and thrombosis (HAT) are serious complications of orthotopic liver transplantation (OLT) with 30% risk of graft loss and death. Open vascular reconstruction or re-transplantation are the traditional treatment options. Enhanced collaboration between transplant and vascular services at our institution has provided minimally invasive options for HAS.

Follow up of Peak Systolic Velocity

METHODS: From September 2009–August 2011, OLT patients with clinical and ultrasound evidence of HAS were evaluated for endovascular treatment. Ultrasound criteria included hepatic artery (HA) peak systolic velocities (PSV) more than triple initial post-transplant evaluation, resistive indices (RI) less than 0.4, and blunted intrahepatic arterial waveforms (tardus parvus). Interventions included
percutaneous transluminal angioplasty (PTA) alone or with stent (PTAS). Pre-intervention, post-intervention, one- and six-month follow-up HA velocities and RIs were compared using the two-tailed t-test. Fischer’s exact test compared re-intervention rates.

RESULTS: Over the study period 237 OLTs were performed with 19 interventions performed in 14 patients with HAS (including 2 previously re-transplanted for HAT), giving an occurrence rate of clinically-significant HAS of 5.9% (14/237). Mean age was 50 ± 8 (range 15–63). Interventions occurred at a mean 82 ± 52 days post-transplant (range 8–233 days). Mean HA velocities before (575 ± 125 cm/s) and after (291 ± 123 cm/s) intervention significantly improved [p < 0.0001], as were mean RIs before (0.41 ± 0.08) and after (0.59 ± 0.08) [p < 0.0001]. Mean follow up was 5.7 ± 0.4 months (range 0–23.2). Sustained improvement in PSV and RI was seen for 11 patients with 1-month follow-up (247 ± 87 cm/s [p = 0.001] and 0.58 ± 0.07 [p < 0.0001], respectively) and 7 patients at 6-months (276 ± 126 cm/s [p = 0.05] and 0.61 ± 0.08 [p < 0.0001], respectively). Five patients underwent PTA, of which 3 required re-intervention with PTAS for re-stenosis at a mean of 39 days. From our early experience with early re-stenosis with PTA alone, our policy changed to primary stent placement when technically possible. Nine patients underwent primary PTAS with self-expanding (n = 3) or coronary balloon-expandable (n = 6) stents. Freedom from re-intervention was 78% with primary stenting versus 40% with PTA [p = 0.27]. No treated patient suffered graft loss.

CONCLUSIONS: Endovascular treatment of HAS after OLT appears safe and effective in the short-term. Primary stenting may provide superior patency compared to PTA alone. Longer follow-up is needed to confirm these early encouraging results.
MP33. Duplex Guided Endovascular Interventions for Acute Lower Extremity Ischemia
Anil Hingorani, MD, Enrico Ascher, MD, Natalie Marks, MD, RVT, Robert Jimenez, MD, ED Aboian, MD, Theresa Jacob, PhD, Alexsander Shiferson, DO
Maimonides Medical Center, Brooklyn, NY

OBJECTIVE: Contrast arteriography (CA) is considered to be the gold standard for preoperative and intraoperative imaging modality for patients with chronic lower limb ischemia. We have previously shown that high quality duplex arteriography can safely replace preoperative CA in these patients. Our experience with duplex guidance for infrainguinal arterial balloon angioplasties and stenting encouraged us to investigate whether this approach can also be used effectively in the setting of acute ischemia.

METHODS: 27 high-risk patients with acute lower extremity ischemia were admitted to our institution with intention to perform endovascular interventions. Twelve patients (44%) had elevated serum creatinine (≥1.5 mg/dL) and one additional patient (4%) was allergic to iodine. Twelve patients (44%) had thromboembolic complications during duplex-guided balloon angioplasties (DGBA), 11 patients (40%) had acute arterial thromboembolism, 2 patients (8%) had thrombosed infrainguinal arterial bypasses with vein (femoral-anterior tibial and femoral-dorsalis pedis) and the remaining 2 patients (8%) had thrombosed popliteal aneurysms discovered on preoperative duplex scan. Five of 23 patients (22%) with arterial thromboembolism had previous ipsilateral balloon angioplasties and stenting procedures.

RESULTS: Of the 12 intraoperative DGBA complications, thromboemboli were diagnosed in the popliteal artery in 6 cases (50%), in the tibio-peroneal trunk in 5 cases (42%) and in the peroneal artery in the remaining case (8%). These were treated under duplex-guidance only with intraarterial instillation of thrombolytic agents in 5 cases (42%) and suction thrombectomy in the remaining 7 cases (58%). Of the 11 cases of acute arterial ischemia, the most proximal thrombus end was identified in the superficial femoral artery in 5 cases (45%) and in the popliteal artery in the remaining 6 cases (55%). Nine of these patients (82%) were treated with duplex-guided suction thrombectomy, balloon angioplasty and stenting. The remaining 2 patients (18%) had a combination of Trellis® thrombectomy followed by suction thrombectomy, balloon angioplasty and stenting. Complete evacuation of the thrombus was achieved after overnight thrombolysis in 2 patients with arterial thromboembolism. Two thrombosed infrapopliteal bypasses were treated with suction thrombectomy and balloon angioplasty of multiple stenotic lesions. Both patients with thromboses popliteal aneurysms required suction thrombectomy, overnight thrombolysis and consecutive placement of Viabahn® stented grafts for aneurysm exclusion.
CONCLUSIONS: Our initial experience suggests that patients with acute lower limb ischemia of diverse etiology can be safely and effectively treated by endovascular procedures under duplex guidance alone.
OBJECTIVES: Radiocontrast imaging has increasingly become a popular diagnostic and therapeutic technique. The advantages of a percutaneous approach generally include shorter hospitalization, less pain, lower occurrence of infection and minimal blood loss. Minimally invasive percutaneous procedures require the use of radiocontrast media which has been shown to cause acute renal failure, also known as radiocontrast induced nephropathy. Prophylactic treatments include sodium bicarbonate, N-acetylcysteine, hydration, hemodialysis or hemofiltration and systemic infusion of fenoldopam. To further minimize the disadvantages of radiocontrast media and to prevent nephropathy, the Benephit catheter is targeted renal therapy in which the delivery of the therapeutic agent is directly to the kidney by infusing within the renal arteries. The therapeutic agent of choice in this trial is fenoldopam, a D-1 receptor agonist.

METHODS: A total of 212 patients underwent angiography. Of those, 20 qualified for the use of Benephit catheter infusion. Inclusion criteria: pre-op Cr ≥1.3. Patients on dialysis were excluded from study. Data (pre and post operative Cr) was collected retrospectively.

RESULTS: The average pre-op Cr among these patients was 1.7 and improved to an average of 1.5 post-operatively. Overall, the average improvement was 11.5% and maximum was 46.2%. Two patients had no change. The Benephit catheter has a 95% success rate of either maintaining or improving kidney function after angiography.

CONCLUSIONS: Administration of N-ac, bicarb and hydration are shown, by the results of this trial, to be effective in just over 60% of patients with renal insufficiency. In order to prevent contrast induced nephropathy in patients, more medical therapy must be done. At this time, it appears that the addition of targeted renal therapy with direct infusion of fenoldopam has a 95% success rate of preventing contrast induced nephropathy.
MP55. The AV Fistula for Long Term TPN Administration

Jonathan D. Woody, MD1, Megan Lovett, RN, BSN, CRNI2
1Athens Vascular Specialists, Athens, GA, 2Athens Regional Medical Center, Athens, GA

OBJECTIVE: Long term total parenteral nutrition (TPN) administration requires central venous access. Long term central venous catheter (CVC) use is problematic. The Fistula First initiative highlighted the advantages of arteriovenous fistula (AVF) over CVC for hemodialysis. AVF may be the preferred access for long term TPN.

METHODS: A database was developed to prospectively monitor patients requiring long term vascular access. We identified five patients receiving long term TPN with recurrent CVC infections. They underwent creation of AVF for long term TPN. Patient characteristics and clinical outcomes were reviewed.

RESULTS: From 2006–2011, five patients underwent creation of AVF for TPN. All were dependent on TPN. Four had short gut syndrome. One had severe diabetic gastroparesis. There were four females and one male in the group. Mean age at the time of AVF was 56. Of the AVF, three were brachio-cephalic, one was a basilic vein transposition (BVT) and one was a cephalic vein transposition. Mean follow up is 23.7 months (range 11–62). Two AVF required percutaneous transluminal angioplasty. All three brachio-cephalic AVF matured. Two were used for TPN. One was never used for TPN but was ultimately used for hemodialysis. The BVT matured and was used for TPN. A poor quality vein was used for the cephalic vein transposition and it failed. All AVF created with adequate veins on pre-op duplex imaging matured. Two patients expired in follow up. No CVC infections occurred in patients using AVF for TPN. We developed a successful program to educate patients and their families about AVF and home access techniques for TPN. One barrier was the reluctance of payors and home health agencies to approve administration of TPN through a non-CVC route.

CONCLUSION: AVF is a safe and effective alternative for long term TPN administration. CVC related infections can be eliminated with the use of AVF for TPN. Patients requiring long term TPN should be referred for AVF. Our protocol for training patients and their families for home access of AVF results in the safe and effective administration of TPN. Efforts should be made to educate payors and other organizations that AVF is a safe and effective method for TPN administration and may be the preferred mode of access.
MP56. Strategies for Increasing Medical Student Awareness and Exposure to Vascular Surgery in Canada: New Ventures for 2012

Kyle Hunt, MD Candidate1, Douglas Wooster, MD2, Andrew Dueck, MD2, Elizabeth Wooster, MEd, PhDc2
1McMaster University, Hamilton, ON, Canada, 2University of Toronto, Toronto, ON, Canada

OBJECTIVES: As of 2012, there will be a five-year, direct-entry residency program (0+5) in vascular surgery in Canada. This presents an opportunity to investigate the most effective strategies for raising medical student awareness, knowledge, and interest in a career in vascular surgery. In the current medical school curriculum only a fraction of students will have exposure to vascular surgery. The use of electronic communication tools and multimedia may have a role in generating interest in vascular surgery amongst potential applicants.

METHODS: A survey to be hosted on an encrypted online survey website (SurveyMonkey.com) and sent to all medical students in Ontario was developed to assay demographic data, 12 career choice determinants, the availability and usage of computers, laptops, and portable devices and preferred social networking and communication methods. A small-scale beta test survey was conducted on a sample of 20 medical students. Comments and feedback received during the test survey period were used to guide the creation of the finalized complete survey.

RESULTS: The type of clinical problems encountered, lifestyle factors and difficulty in obtaining a residency ranked highly in specialty selection. Future income, research potential and malpractice issues had a low ranking. Information was best delivered in Pre-clerkship. Websites with individual or aggregate residency information were most useful; journal articles and mass emails were not. All students owned a computer and MP3 player; 70% had a ‘smartphone’ capable of data transmission. The complete survey was elaborated to address more detailed study of best approaches to electronic communication regarding vascular specialty training and practice based on the findings of this beta survey.

CONCLUSIONS: We identified the preferences of medical students for receiving information regarding residency selection. We demonstrated the feasibility of further assessing this through a detailed internet-based survey. The information obtained will be useful to develop focused, effective and efficient communication strategies for vascular surgical training programs in addressing the 0+5 program development.
OBJECTIVE: Thoracic outlet syndrome (TOS) is a constellation of signs and symptoms caused by compression of the neurovascular structures in the thoracic outlet. These structures include the brachial plexus, the subclavian vein, and the subclavian artery resulting in neurogenic (N), venous (V), and arterial (A) types of TOS, respectively. The purpose of this study was to evaluate the outcomes of surgical decompression for TOS.

METHODS: A retrospective review of medical records for patients who underwent surgical decompression for TOS at a newly established center was performed. Primary outcomes were assessed according to Derkash’s classification as excellent, good, fair, and poor. Secondary outcomes included mortality, complications, and length of stay.

RESULTS: From 8/2004 to 6/2011, 40 paraclavicular decompression procedures were performed on 36 patients (16 males) with thoracic outlet syndrome. The mean age was 36.5 years (range 15–68). Bilateral decompression was performed on 4 patients. The TOS types were neurologic (n = 19), venous (n = 16), and arterial (n = 5). The presenting symptoms were pain (83%), numbness (67.5%), swelling (57.5%), fatigue (52.5%), weakness (50%), coolness (32.5%), headache (25%), and ulceration (5%). A previous history of trauma was present in 22.2%. Two patients presented with recurrent symptoms after previous first rib resection at another institution. Diagnostic tests performed included nerve conduction studies (43%), venogram (40%), and arteriogram (20%). All patients with NTOS completed a trial of physical therapy prior to surgery. All patients underwent paraclavicular decompression, which included radical anterior and partial middle scalenectionomy, brachial plexus neurolysis, and partial (52.5%) or complete (35%) first rib removal. Functional outcomes were excellent, good, fair, and poor in 74.4%, 15.4%, 10.3%, and 0% of cases, respectively. One patient was lost to follow up. Two patients with incomplete relief of symptoms after paraclavicular decompression underwent pectoralis minor decompression. There was no mortality. Complications included pleural effusion requiring evacuation (n = 4), neuropraxia (n = 1), and lymph leak (n = 1) treated with tube thoracostomy. No patients experienced injury to the long thoracic or phrenic nerves. The mean length of stay was 4.4 days. Mean follow-up was 10.3 months (range 0.2–57.1).
CONCLUSIONS: In our experience, surgical paraclavicular decompression can provide safe and effective relief of neurological, venous, and arterial TOS symptoms. Functional outcomes were excellent or good in the majority of patients with minimal complications.

12:30 pm ADJOURN
SCVS ePoster Listing
Located in the Exhibit Hall

EP1. Early Duplex Predicts Late Stenosis After Renal Artery Angioplasty and Stenting
Jason W. Christie, MD, Thomas D. Conlee, MD, Timothy E. Craven, Justin B. Hurie, MD, Kimberley J. Hansen, MD
Wake Forest University Baptist Medical Center, Winston-Salem, NC

EP2. Autogenous Vein Reconstruction May Not Protect Against Re-Infection of Infrarenal Aortic Grafts
Kristofer M. Charlton-Ouw, MD, Harleen K. Sandhu, MD, Guanmengqian Huang, MD, Samuel S. Leake, BS, Charles C. Miller, III, PhD, Ali Azizzadeh, MD, Sheila M. Coogan, MD, Anthony L. Estrella, MD, Safi J. Safi, MD
1University of Texas Medical School at Houston, Houston, TX, 2Shanghai Jiaotong University, Shanghai, China, 3Texas Tech University Health Sciences Center, El Paso, TX

Sibu P. Saha, MD, MBA, Satish Muluk, MD, Worthington Schenk, III, MD, James W. Dennis, MD, Bettina Ploder, MS, Ani Grigorian, MFA, Isabella Presch, MD, MBA, Andreas Goppelt, PhD
1Division of Cardiovascular and Thoracic Surgery, Department of Surgery, University of Kentucky, Lexington, KY, 2Allegheny General Hospital, Division of Vascular Surgery West Penn, Pittsburgh, PA, 3University of Virginia, the Surgical Therapeutic Advancement Center, Department of Surgery, Charlottesville, VA, 4University of Florida Health Science Center of Jacksonville, Department of Surgery, Jacksonville, FL, 5Baxter innovations GMBH, Vienna, Austria, 6Baxter Healthcare Corp, Westlake Village, CA
Wadi Gomero-Cure, MD, Robert Lowery, MD, Steven W. Boyce, MD, Jennifer Ellis, MD, Ammar S. Bafi, MD, Fred Beavers, MD, Sean O’Donnell, MD, Paul Corso, MD
Washington Hospital Center, Washington, DC

EP5. Endovascular Treatment for Distal Aortic Occlusive Disease with Concomitant Asymptomatic Chronic Mesenteric Ischemia: Successful Revascularization of the Aorta and Inferior Mesenteric Artery Using the Kissing-Stents Technique
Marisa Toma, MD, Angelo Santos, MD, Bart Chess, MD, Satish Muluk, MD
Allegheny General Hospital, Pittsburgh, PA

Clifford M. Sales, MD, Hilary Barr*, Christopher Banko, RNP, Rami Bustami, PhD
1Overlook Hospital, Summit, NJ, USA, 2The Cardiovascular Care Group, Westfield, NJ

EP7. Withdrawn

EP8. Safety of IVC Filter Retrieval without Interruption of Anticoagulation
Neil Moudgill, MD, Bing Shue, BS, Paul DiMuzio, MD, Taki Galanis, MD, Atul Rao, MD, Joshua Eisenberg, MD
Thomas Jefferson University, Philadelphia, PA

EP9. WITHDRAWN
EP10. Screening for Carotid Stenosis—Prospective Clinical Trial Using a Hand-Held Ultrasound Device
John Blebea, MD1, David Vilkomerson, PhD2, Robert Outcault, RVT3, Glenn Jacobowitz, MD4, Kenneth Goldman, MD5
1Case Western Reserve University, Cleveland, OH, 2DVX, Princeton, NJ 3Princeton Surgical Associates, Princeton, NJ, 4New York University, New York, NY

EP11. Preliminary Results of a Coated Shunt to Reduce Thrombotic Complications During Prolonged Arterial Shunting
Joel Durinka, MD1, Rashad Choudry, MD1, Grisafi Joseph, MD1, H. Hank Simms, MD1, Jeffrey Indes, MD2
1Albert Einstein Medical Center, Philadelphia, PA, 2Yale University School of Medicine, New Haven, CT

Patric Liang, Rob Hurks, MD, Rodney P. Bensley, MD, Frank Pomposelli, MD, Allen Hamdan, MD, Mark Wyers, MD, Elliot Chaikof, PhD, MD, Marc Schermerhorn, MD
BIDMC, Boston, MA

Tam T. Huynh, MD1, Eric K. Peden, MD2, Javier E. Anaya-Ayala, MD1, Mark G. Davies, MD, PhD, MBA2, Joseph J. Naoum2
1University of Texas MD Anderson Cancer Center and The Methodist Hospital, Houston, TX, 2The Methodist Hospital, Houston, TX
Brian G. DeRubertis, MD, Wesley Lew, MD, Sinan Jabori, Ali Alktaifi, MD, Juan C. Jimenez, MD, Peter F. Lawrence, MD
UCLA School of Medicine, Los Angeles, CA

EP15. The Impact of Clinical and Anatomical Factors on the Utility of Computed Tomography in the Workup of Peripheral Arterial Occlusive Disease
Timothy W. Capps, MD, Bryan A. Ehler, MD, Matthew B. Burruss, MD, Jennifer E. Threatt, BA, Alex J. Ferikes, Chaitanya Madamanchi, Charles S. Powell, MD, William M. Bogey, MD, Frank M. Parker, DO, Michael C. Stoner, MD
East Carolina University, Greenville, NC

Daniel E. Ramirez, MD, W.C. Sternbergh, III, MD, Taylor Smith, MD, Hernan A. Bazan, MD
Ochsner Medical Center, New Orleans, LA

EP17. The Impact of Limited Vascular Ultrasound Studies on Clinical Decision Making in Patients with Peripheral Arterial Disease
Douglas Wooster, MD1, Mary Angelson, BSc, RVT2, Elizabeth Wooster, M.Ed, PhD(c)3, Andrew Dueck, MD4
1University of Toronto, Toronto, ON, Canada, 2Toronto West Vascular Centre, Toronto, ON, Canada

Konstantinos Spanos, Sr, Vasilios Salepisis, Nikolaos Roussas, Sr, Antonios Vouzas, Sr, Christos Argyriou, Sr, Athanasios Giannoukas, Sr, Professor
University Hospital of Larissa, Larissa, Greece
Peter Naughton, MD, Manuel Garcia-Toca, Heron Rodriguez, MD, Mark Eskandari, MD, Mark Morasch, MD
Northwestern Memorial Hospital, Chicago, IL

EP20. Factors Influencing Maturation of Native Arteriovenous Fistulas
Karen Woo, Fred A. Weaver, Vincent L. Rowe
University of Southern California, Los Angeles, CA

EP21. Socioeconomic Status Affects Outcome After Vascular Surgery
Tej K Atluri, MD, Racheed Ghanami, MD, Jeanette Andrews, MS, Kimberley J. Hansen, MD, Thomas Conlee, MD
1Wake Forest University Baptist Medical Center, Winston-Salem, NC, 2Wake Forest School of Medicine, Winston-Salem, NC

Walaya Methodius Rayford, MD, James M. Combs, MD, Eric D. Wellons, MD, James M. Poindexter, MD, David Rosenthal, MD
Atlanta Medical Center, Atlanta, GA

EP23. Upper Extremity Thrombo-Embolectomy Using Preoperative Ultrasound Duplex as the Sole Diagnostic Imaging Method
Anil Hingorani, MD, Enrico Ascher, MD, Natalie Marks, MD, Dred Usoh, MD, Alexsander Shiferson, DO, Robert Jimenez, MD, Ed Aboian, MDN, Theresa Jacob, PhD, Thomas McIntyre, PA
Maimonides Medical Center, Brooklyn, NY
EP24. Paradigm Shift in Ruptured AAA (RAAA) Management; Twelve Years Experience in a Tertiary Referral Centre of Endovascular Repair of RAAA (REVAR) vs. Open Repair (OR)
Sherif Sultan, MD, FRCS, FASC, EBQS Vascular, Ala Elhelali, MSc, Niamh Hynes, MD, MRCS, MMSc, ENDO
Western Vascular Institute, Galway, Ireland

EP25. Endovascular Treatment of Profunda Femoris Artery Obstructive Disease
Eleonora Tomasyan, Simon Papoyan
Moscow Municipal Hospital, Moscow, Russian Federation

Robert Hacker, MD, Toufic Safa, MD, FACS
Northshore – Longisland Jewish Health System, Manhasset, NY

EP27. Hybrid Approach to Bleeding Aorto-Enteric Fistula in Patients Not Amenable to Traditional Open Repair Using the Renal Artery as a Conduit
Guillermo A. Escobar, MD, Jonathan L. Eliason, MD, Justin B. Hurie, MD
University of Michigan, Ann Arbor, MI

Paul J. Riesenman, MD, MS, James G. Reeves, MD, Karthikeshwar Kasirajan, MD, Luke P. Brewster, MD, PhD, Ravi K. Vearaswamy, MD, Joseph J. Ricotta II, MD, Matthew A. Corriere, MD, Thomas F. Dodson, MD
Emory University, Atlanta, GA
EP29. Isolated Iliac Artery Aneurysms: Management and Outcomes in the Endovascular Era
Rodney P. Bensley, MD, Rob Hurks, MD, Ruby C. Lo, MD, Frank Pomposelli, MD, Allen Hamdan, MD, Mark Wyers, MD, Elliot Chaikof, MD, Marc Schermerhorn, MD
BIDMC, Boston, MA

EP30. MRV vs. IVUS for the Detection of Iliac Vein Stenosis
Anil Hingorani, MD, Danny Novak, MD, Enrico Ascher, MD, Natalie Marks, MD, RVT, Alexandar Shiferson, DO, Robert Jimenez, MD, Ed Aboian, MD, Theresa Jacob, PhD
Maimonides Medical Center, Brooklyn, NY

EP31. The Evolution of EVAR: Has Surgical Techniques Improved with Increasing Experience?
Jeffrey Jim, MD¹, Jason T. Lee, MD², Luis A. Sanchez, MD²
¹Washington University School of Medicine, St. Louis, MO, ²Stanford University Medical Center, Stanford, CA

EP32. Atherectomy for Radial Artery Calcification (ARC) in Dialysis Access
Richard Schutzer, MD
North Shore/Long Island Jewish, Lake Success, NY

EP33. Treatment and Outcome Analyses of Splenic Artery Aneurysms in a 5-Year Population Based Sample
Matthew T. Allemang, MD, Jesse D. Schold, PhD, Ryan O. Lakin, MD, Vikram S. Kashyap, MD
¹University Hospitals Case Medical Center, Cleveland, OH, ²Cleveland Clinic Foundation, Cleveland, OH

EP34. Variability in Carotid Endarterectomy: An Outcome and Cost Analysis
Sibu P. Saha, MD, MBA, David Minion, MD, Eleftherios Xenos, MD, Victor Ferraris, MD, PhD, Daniel Davenport, PhD, Eric Endean, MD
University of KY, Lexington, KY
EP35. Single Surgeon Carotid Endarterectomy Results in a Community Hospital
Kyle Matthew Hines, College Student,
Daniel J. McGraw, MD
Camden Clark Medical Center, Parkersburg, WV

Benjamin Lind, MD1, Chad Jacobs, MD1,
Ferral Hector, MD1, Peter Hunt, MD2,
Goldin Marshall, MD3, Robert March, MD3,
Walter McCarthy, MD3
1Rush University Medical Center, Chicago, IL,
2Cardiovascular Thoracic Surgery, Rush University Medical Center, Chicago, IL

EP37. Single Center Long-Term Results Utilizing the Talent Aortic Endograft
Lisa M. Louwers, MD, Paul G. Bove, MD,
Graham W. Long, MD
William Beaumont Hospital, Royal Oak, MI

EP38. Bowing as an Adjunct for Endovascular Aneurysm Repair
Chen Rubinstein, MD, Eric D. Endean, MD,
David J. Minion, MD, Gabriel J. Bietz, MD,
Ehab S. Sorial, MD, Shane D. O’Keeffe, MD,
Eleftherios S. Xenos, MD, PhD
University of Kentucky, Lexington, KY

EP39. In-patient Adult and Pediatric Vascular Ultrasound: Distribution and Rate of Positive Findings
Anil Hingorani, MD, Danny Novak, Enrico Ascher, MD,
Natalie Marks, MD RVT, Alexander Shiferson, DO,
Robert Jimenez, MD, Ed Aboian, MD,
Theresa Jacob, PhD
Maimonides Medical Center, Brooklyn, NY
EP40. Prevalence of Coronary Artery Disease in Patients Undergoing Elective Aortoiliac Surgery
Anthony Iacco, MD, O. William Brown, MD, Catherine J. Coleman, RN, BSN, Victoria C. Lucia, PhD
Beaumont Health System, Royal Oak, MI

EP41. Management of Percutaneous Access Complications
Benjamin Lind, MD¹, Chad Jacobs, MD¹, Ferial Hector, MD², Peter Hunt, MD², Walter McCarthy, MD²
¹Rush University Medical Center, Chicago, IL, ²Cardiovascular Thoracic Surgery, Rush University Medical Center, Chicago, IL
CONSTITUTION AND BY-LAWS
SOCIETY FOR CLINICAL VASCULAR SURGERY

ARTICLE I
This Society shall be called the “Society for Clinical Vascular Surgery”.

ARTICLE II
The purposes of this Society shall be to advance the art and science of vascular surgery, to provide a forum for vascular surgeons, and to improve the delivery of health care in vascular disease to the public.

ARTICLE III
Membership
Section I – Types of Membership. The Society shall consist of Active, Inactive, Senior, Candidate, Affiliate, and Honorary members.

Section II – Active Membership. Active Membership shall be limited to licensed surgeons who are certified by the American Board of Surgery or surgeons who have surgical certification equivalent to the American Board of Surgery. In addition, applicants for Active Membership shall furnish evidence that they have completed an accredited vascular residency training program or submit evidence of otherwise equivalent experience. Applicants who have completed an accredited vascular residency shall supply a letter of recommendation from his or her Program Director. Active Membership may also be granted to physicians who have been actively engaged in the practice of vascular surgery for two years or more after graduation and completion of general surgery residency training. Applicants for Active Membership who have not completed a certified vascular residency shall submit a list of vascular procedures performed the year prior to the application. The vascular procedures listed should include the operative results and complications. Active Members shall pay dues and shall be eligible to vote to and hold office.

Section III – Inactive Membership. Active members who are incapacitated by illness or accident, or are unable to continue in the practice of medicine, and for whom the payment of dues would be a hardship, are eligible for Inactive Membership. The Active Member must submit a written request to the Secretary for Inactive Membership due to hardship. A vote of the Executive Committee shall decide whether to grant the request for the transfer to inactive status. Within three (3) years of Inactive Membership, the Inactive Member must submit a written request to either return to Active status or be transferred to Senior status.
If neither category is applicable, the Executive Committee reserves the right to review the membership status and may determine the appropriate actions. Inactive Members shall not pay dues, shall not be eligible to vote, or hold office.

Section IV – Senior Membership. Senior Membership may be requested by physicians who are 65 years of age or greater and who are no longer actively practicing, for reasons of health or other just cause, may submit a written request to the Secretary to transfer to Senior membership status. This request shall be acted upon by the Council.

Section V – Honorary Membership. Honorary Membership shall be limited to surgeons of special eminence who have made outstanding contributions to vascular surgery. Honorary Members, at their request, may change to Active Membership.

Section VI – Candidate Membership. Candidate Membership shall include residents enrolled in an accredited program of surgical education and/or vascular surgeons enrolled in a research or fellowship program acceptable to the Society. Candidate Membership will be appropriate until such time an individual meets the requirements for Active membership (as outlined in Article III, Section II of these Bylaws). Candidates who enrolled in specialized training programs in vascular surgery may apply directly upon completion of his or her residency training for Active membership in the Society. Candidate Members shall pay an initiation fee but shall not be required to pay annual dues. Candidate members are not eligible to vote and are not eligible to hold office.

Section VII – Affiliate Membership. Affiliate Membership shall include individuals who are surgeons who otherwise do not qualify for Active or Candidate Membership, but have an interest in vascular disease. Affiliate Membership shall also include other healthcare professionals who are not surgeons, but have an interest in vascular disease. Affiliate Members shall pay dues, but are not eligible to vote and are not eligible to hold office.

Section VIII – Rights and Privileges. Senior and Honorary members shall not pay dues or assessments, shall not be eligible to vote and shall not be eligible to hold office. Senior and Honorary Members may elect to receive a subscription of the Society’s official Journal at the Active Member subscription rate.

Section IX – Election to Membership

A. Active and Candidate Membership. Applicants for Active and Candidate Membership shall be admitted following application to the Secretary, approval by the Membership Committee with recommendation to the Active Membership and the Executive Committee and approval by a majority vote of Active Members attending the Annual Business Meeting. Applications for membership must be received by the Secretary by January 1 of each year to be considered and voted on at the next Annual Business Meeting.
B. Inactive and Senior Membership. Inactive and Senior Members may include Active Members who have submitted a written request to the Secretary, and after review, have been recommended to Inactive or Senior Membership status by the Executive Committee. Inactive and Senior Membership status shall be conferred when after presentation to the Active Members at the Annual Business Meeting upon Executive Committee recommendation, the majority of Active Members vote to approve said written requests.

C. Honorary Membership. Names of candidates for Honorary Membership should be submitted in writing to the Executive Committee for investigation and approval. A unanimous vote of the Executive Committee shall be required for election to Honorary Membership.

D. Corresponding Membership. Applicants for Corresponding membership shall have the endorsement of two Active members and shall follow the same application procedures established for Active and Candidate membership.

E. Affiliate Membership. Affiliate Membership shall follow the same election procedure as Active and Candidate Membership.

Section X – Acceptance of Members. Each new member shall be notified in writing of his election to membership in the Society for Clinical Vascular Surgery. Active, Candidate and Affiliate Members shall be invoiced for dues and assessments upon notification. Said invoice will include the current year’s dues and assessments. New members are encouraged to submit an abstract for the program of the Annual Scientific Meeting.

Section XI – Termination of Membership. Termination of membership may be requested by any Member. This request must be presented in writing to the Secretary. Membership may be terminated by the majority vote of the Executive Committee for non-payment of dues after December 31 of the year in which dues are billed, discontinuance of the practice of vascular surgery, early retirement, or incapacity by illness or accident for more than two years. Membership may also be suspended or terminated for unethical or unprofessional conduct.

ARTICLE IV

Council

Section 1 – Council. The Council shall consist of the President, President-Elect, Vice-President, Secretary, Treasurer, Recorder, three elected members at large, and the three immediate surviving past presidents. The Representative to the Advisory Council for Vascular Surgery of the American College of Surgeons shall be a non-voting member of the Council and shall serve his or her term in accordance with the term set by the Advisory Council for Vascular Surgery of the American College of Surgeons. The Representative to the Board of Governors of the American College of Surgeons shall be a non-voting member of the Council. He/she shall serve his/her term in accordance with the term set by the American College of Surgeons. The chairs of the following standing committees shall serve
as ex-officio members of the Council: Membership, Program and Constitution and Bylaws. The Editor of the Newsletter shall be appointed by the President and approved by the Council. The Editor shall be an ex-officio member of the Council. The Editor shall serve in that position until a replacement is deemed necessary. The President, President-Elect and Vice President shall serve a term of one year. The Secretary, Treasurer, and Recorder shall be elected for a three-year term; subject to renomination and vote as described below. The Secretary, Treasurer and Recorder may serve two consecutive three-year terms.

Section II - Nominations. The President-Elect and Vice President shall be nominated by a Nominating Committee and presented for a vote by the Active Members of the Society present at the Annual Business Meeting. Candidate(s) for Secretary, Treasurer, Recorder, and Councilor shall be generated in one of two ways:

1. The Nominating Committee shall provide a list of candidate(s) for these offices at the Annual Business Meeting. The Nominating Committee shall meet at a time prior to the Annual Business Meeting sufficient to conduct the business of the nominations for these positions.

2. Any Active Member in good standing can submit his/her name as a candidate for these offices, if open for election that year, to the Secretary of the Society by December 31. To do so for the position of Secretary, Treasurer, or Recorder requires the Active Member to submit a petition signed by ten percent of the Active Members, a Curriculum Vitae, and a summary which documents the candidates’ philosophies for, previous activities in and commitment to the Society. Active Members interested in the position of Councilor (three-year term) need only submit a Curriculum Vita, three letters of recommendation from Active Members of the Society and a brief summary outlining their activities and interest in the position. If more than one candidate has been nominated for a position, whether it is from the Nominating Committee or by separate submission to the Secretary, the Nominating Committee shall post a list of these candidate(s) to the Active Members of the Society by February 1. All such proposed candidates shall be available for review on the Society web page (the Candidates for office). If no member(s) submits his/her name as a candidate for office outside of the Nominating Committee process, then the slate of Candidates shall be provided to the Active Members at the Annual Business Meeting.

Section III - Elections. Election of Officers and the Councilor shall take place each year at the Annual Business Meeting. The slate of Officers for President-Elect, Vice President, Secretary, Treasurer, Recorder, and Councilor shall be presented to the Active Members present at the Annual Business Meeting for a vote. Election of Secretary, Treasurer, Recorder, or Councilor shall be by ballot distributed at the Annual Business Meeting if more than one candidate is to be considered. Voting shall be done by Active Members of the Society present at the Annual Business Meeting.
Section IV – Vacancies. Any vacancy occurring during the year among the Officers of the Society shall be filled by an Active Member of the Society nominated by the President and elected by a majority vote of the Executive Committee. The term of office shall be for the duration of the term of the vacating Officer.

ARTICLE V
Duties of Officers

Section I – President. The President shall preside at the meetings of the Society, preserve order, regulate debates, sign Certificates of Membership, convene the Nominating Committee, serve as ex-officio on committees of the Society as he/she deems appropriate, announce results of elections, and perform all duties legitimately pertaining to his office. He/she shall review, evaluate, and respond to complaints of the membership.

Section II – President-Elect. The President-Elect shall automatically succeed as President of the Society in the year following his election to President-Elect. The President-Elect shall serve as Chair of the Issues Committee. The President-Elect shall preside at all meetings in the absence of the President. He shall succeed to the presidency upon the office becoming vacant by death, resignation or termination of membership.

Section III – Vice-President. The Vice President shall serve as Chair of the Postgraduate Education Committee. The Vice President shall also be the designated Industry Liaison and is responsible for the Society’s fundraising efforts for educational activities, including but not limited to symposia and/or training workshops held in conjunction with the Society’s annual meeting.

Section IV – Secretary. The Secretary shall keep minutes of meetings of the Society and of the Council and shall attest to all official acts requiring certification with or independent of the President. He/she shall keep in custody the Seal of the Society and affix it to all documents and papers as directed by the Society. He/she shall have printed a yearly list of the membership. The Secretary shall receive no salary but shall be reasonably compensated for his/her expenses incurred on behalf of the Society.

Section V – Treasurer. The Treasurer shall approve all expenses, invoices, and bills of the Society. He/she shall receive all monies and funds belonging to the Society and pay all bills when properly rendered. He/she shall collect all dues as promptly as possible and report to the Society any members in arrears. The Treasurer shall present an annual budget to the Council for review and ratification. The Treasurer shall receive no salary but shall be reasonably compensated for his/her expenses incurred on behalf of the Society.

Section VI – Recorder. The Recorder shall serve as the liaison to the Editor of the Journal selected by the Society for publication. The Recorder shall see that manuscripts based on abstracts presented at the Annual Meeting are submitted
for review and possible publication in the appropriate journal. The Recorder shall report to the Council the details of the status of publication of the manuscripts.

Section VII – Society Administrator. The Council may delegate to an individual or firm, the responsibilities for organizing and administering the affairs and functions of the Society.

ARTICLE VI

Standing Committees

Section I. The standing committees shall consist of the Executive Committee, Nominating Committee, Membership Committee, Program Committee, Constitution and By-Laws Committee, Postgraduate Education Committee, Issues Committee, and Finance Committee.

Section II – Executive Committee. The Executive Committee of the Council shall consist of the following voting members:

- A. President
- B. President-Elect
- C. Vice-President
- D. Secretary
- E. Treasurer
- F. The most immediate surviving Past President

The Executive Committee will be chaired by the President who will preside over the Executive Committee sessions. Regular meetings of the Executive Committee shall be held at the call of the President in conjunction with the Annual Business Meetings. Special meetings of the Executive Committee may be held on notice from the President. A simple majority of the members of the Executive Committee shall constitute a quorum. When appropriate, the Executive Committee shall act on behalf of the Council when the Council is not in session.

The Executive Committee shall ratify as eligible the names of all proposed candidates and recommend them to the Active Membership for vote at the Annual Business Meeting.

Section III – Nominating Committee. The Nominating Committee shall consist of the President, President-Elect and the three Immediate Past Presidents. The President shall Chair the Nominating Committee.

Section IV – Membership Committee. The Membership Committee shall consist of three members to serve overlapping terms of three years each. The Secretary shall serve as ex-officio. A new member shall be appointed annually by the President. The most senior member of the Membership Committee shall serve as Chair. The Membership Committee shall review all applications for membership and shall present their nominations for Active, Candidate and Affiliate membership to the Executive Committee for review and ratification prior to the Annual Business Meeting.
Section V – Program Committee. The Program Committee shall consist of the President, Secretary, Recorder, and three members to serve overlapping terms of three years each. A new member shall be appointed annually by the President. The most senior of the three appointed members of the Program Committee shall serve as Chair. The Chair shall propose possible programs, modes of presentation and format of the program. The Program Committee shall meet to plan the program, choose submitted abstracts for oral and/or written presentation, and conduct other business as needed to secure the program for the Annual Meeting.

Section VI – Constitution and By-Laws Committee. The Constitution and By-Laws Committee shall consist of three members to serve overlapping terms of three years each. A new member shall be appointed annually by the President. The most senior member of the Constitution and By-Laws Committee shall serve as Chair. The Constitution and By-Laws Committee shall review the Constitution and By-Laws from time to time as directed by the Council and when appropriate, make recommendations regarding amendments.

Section VII – Postgraduate Education Committee. The Vice President shall serve as Chair of the Postgraduate Education Committee. The Chair shall appoint the necessary number of members to the Postgraduate Education Committee for a one-year term. The Postgraduate Education Committee members shall serve as moderators for the annual postgraduate courses. The Postgraduate Education Committee will organize topics, length, program and faculty for postgraduate courses to be held in collaboration with the Annual Meeting.

Section VIII – Issues Committee. The President-Elect shall serve as Chair of the Issues Committee and will be responsible for organizing and producing the Issues Session at the Annual Meeting.

Section IX – Finance Committee. The Finance Committee shall consist of four members: the Treasurer and three members to serve overlapping terms of three years each. A new member shall be appointed annually by the President. The Treasurer shall serve as Chair. The Finance Committee shall review annually the performance of the Society’s investment portfolio.

Section X – Committee Participation. Any Society Member may submit his/her name to the President for service on a committee.

ARTICLE VII
Meetings

Section I – Annual Meeting. There shall be an annual business and scientific meeting, the time and place to be decided by the Council.

Section II – Quorum. For the transaction of business, twenty-five (25) of the voting members present at the Annual Business Meeting shall constitute a quorum.
ARTICLE VIII
Funds

Section I – Initiation Fee. There shall be an initiation fee established by the Council, which shall accompany the application for membership.

Section II – Annual Dues. The annual dues shall be set by the Council.

Section III – Assessments. Assessments may be approved by a majority vote of Active Members present at any Annual Business Meeting provided that such an assessment has been duly recommended by the Council.

Section IV – Nonpayment of Dues. Any member in arrears for one year, being notified of the fact by the Treasurer in writing, and not paying his/her dues within 30 days thereafter, shall forfeit his/her membership. It shall be the duty of the Treasurer to notify the Society of such forfeiture, which fact shall be entered in the minutes and the name stricken from the list of members. The notice aforesaid shall contain a copy of this section.

ARTICLE IX
Seal and Certificate of Membership

The Society shall have a distinct Seal as well as a Certificate of Membership. The Certificate of Membership shall be signed by the President and the Secretary. Every member shall be entitled to a Certificate of Membership.

ARTICLE X
Annual Business Meeting

Section I. An Annual Business Meeting shall be held at each annual meeting.

ARTICLE XI
Parliamentary Procedure

Deliberations of the Society shall be governed by parliamentary usage, as contained in Robert's Rules of Order, as amended from time to time, when not in conflict with this Constitution and By-Laws.

ARTICLE XII
Amendments

The Society may amend any Article of the Constitution and By-Laws by a majority vote of those Active Members present at the Annual Business Meeting. Such amendments must be circulated to the membership by mail at least 30 days prior to the Annual Business Meeting of the Society. The Council may, by a 3/4 vote, pass resolutions, which clarify the amendments.
SOCIETY FOR CLINICAL VASCULAR SURGERY

ALPHABETICAL ROSTER

The following member listing is proprietary information of the Society for Clinical Vascular Surgery (SCVS) and may not be distributed or duplicated, in whole or in part, for any purpose without the prior written consent of the SCVS. Use of the information for telemarketing or any other solicitation of any persons on this list is strictly prohibited.

The information printed here is current as of January 1, 2011. Please use the form at the end of the book to update your membership records. We encourage you to provide a current email address to receive advance meeting information. You may email your update to: scvs@prri.com.

HONORARY MEMBERS

BAUM, Stanley
Hospital of the University of Penn
3400 Spruce St
Philadelphia, PA 19104

BERGAN, John J (Elisabeth)
9850 Genesee Ave, #410
La Jolla, CA 92037
858-550-0330
FAX: 858-550-0676
jbergan@popmail.ucsd.edu

BLAISDELL, F. William (Marilyn)
Univ of CA, Davis Med Center
2221 Stockton Blvd
Sacramento, CA 95817
916-734-2207
FAX: 916-734-5119
fwblaisdell@ucdavis.edu

BROWSE, Norman L (Jeanne)
Corbet House
Butes Lane, Alderney
Channel Islands, GY9 3UU
England
+44-1481823716

CANNON, Jack A (Helen)
25132 Via Pacifica
Dana Point, CA 92629-2049
949-481-3328
jac12@cox.net

CRONENWETT, Jack L (Debra)
Dartmouth-Hitchcock Med Center
One Medical Center Dr
Lebanon, NH 03756
603-650-8670
FAX: 603-650-4973
jack.cronenwett@hitchcock.org

GREENSTONE, Seymour M (Bess)
4075 El Camino Way, #331
Palo Alto, CA 94305-4043
650-324-9434

GROLLMAN, Julius H (Alexa)
Little Company of Mary Hospital
Dept of Radiological Sciences
Torrance, CA 90503
310-543-5840
FAX: 310-340-6610
jgrollma@ucla.edu

JOHNSTON, K. Wayne (Jean)
University of Toronto
200 Elizabeth St, Eaton 6-210
Canada
416-340-3552
FAX: 416-340-5029
wayne.johnston@utoronto.ca
SCVS • 40TH ANNUAL SYMPOSIUM ON VASCULAR SURGERY

May, James (Claire)
University of Sydney
Department of Surgery
Sydney, NW 2006
Australia
61-2-93513358
FAX: 61-2-93517075
vascurg@med.usyd.edu.au

Mellick, Selim A (Pat)
Lindismead
34 Towers St, Ascot
Brisbane, QN 4007
Australia
07 3262 2366
FAX: 07-38320727
mellick@optusnet.com.au

Millikan, Clark H
Henry Ford Hospital, Neurology
2799 W. Grand Blvd
Detroit, MI 48202

Nicolaides, Andrew N (Lala)
Cyprus Inst. of Neurology & Genetics
PO Box 23462
Nicosia, 1683
Cyprus
357 22 392600
FAX: 357 22 358237
amicolai@cytanet.com.cy

PaaSke, William P
Aarhus University Hospital, Skejby Sygehus
Cardiothoracic & Vascular Surgery
Aarhus N, DK-8200
Denmark
45-89-496-985
FAX: 45-89-496-979
william@paaske.org

Parodi, Juan C (Graciela)
University of Miami Miller School/
Haltz Bld
1611 NW 12th Ave, E. Tower,
#3016
Miami, FL 33136
305-585-5284
FAX: 305-585-8569
jparodi@med.miami.edu

Rich, Norman M (Lois)
FE Hebert SOM, USUHS; Surgery
4301 Jones Bridge Rd
Bethesda, MD 20814
301-295-3155
FAX: 301-295-3627
nrich@usuhs.mil

Schwartz, Seymour I
Strong Memorial Hospital
601 Elmwood Ave
Rochester, NY 14642-8410
585-275-7339
FAX: 585-276-0079
seymour_schwartz@urmc.rochester.edu

Veith, Frank J (Carol)
4455 Douglas Ave, #11E
New York, NY 10471
718-549-3140
FAX: 718-549-3142
fjvmd@msn.com

Wagner, F. William, Jr (Celia)
T Jefferson Univ Historian
Scott Bldg, #618
Philadelphia, PA 19107-5587
215-955-7907

Yao, James ST (Louise)
Northwestern University Medical School
676 North Saint Clair St, Ste 650
Chicago, IL 60611
312-695-2716
FAX: 312-695-4955
jyao@nmh.org

* Senior † New Members # Candidate § Inactive

241
ALPHABETICAL MEMBERS LIST

* ABOULAFIA, Elie D (Eileen)
27209 Lahser Rd, Ste #120
Southfield, MI 48034-8402
248-358-4892
FAX: 248-358-5125
vascelie@aol.com

ABU GHaida, Ahmad M (Nibal)
9105 Franklin Square Dr, #313
Rosedale, MD 21237
410-682-4433
FAX: 410-682-4051
abughaida@yahoo.com

ABURAHMA, Ali F (Marion)
Robert C. Byrd Health Science Center, WVU
3110 MacCorkle Ave, SE
Charleston, WV 25304
304-388-4887
FAX: 304-388-4879
ali.aburahma@camc.org

ACOSTA, Ignacio (Paula Ann)
1808 Verdugo Blvd, #409
Glendale, CA 91208
818-790-8020
FAX: 818-790-9313

ADAMS, John G, Jr (Krista)
Boone Hospital Center
1605 E. Broadway, Ste 110
Columbia, MO 65201
573-443-8773
FAX: 573-875-4972
jgadamsjr@csa@aol.com

ADEDUNTA, Azeez P (Laura)
435 Hawthorne Ave, #600
Athens, GA 30606
706-227-0871
FAX: 706-227-0865
vveg@aol.com

ADELMAN, Mark A (Christie)
University Vascular Associates
530 1st Ave, #6F
New York, NY 10016
212-263-7311
FAX: 212-263-7722
mark.adelman@med.nyu.edu

ADOURIE, Riad (Dominique)
Association of South Bay Surgeons
23451 Madison St, Ste 340
Torrance, CA 90505
310-373-6864
FAX: 310-263-9944
radourie@gmail.com

AFRIDI, M. Farooq (Grace)
Ft. Miami Medical Center
5705 Moncelova Rd, Ste 205
Maumee, OH 43537
419-482-6900
FAX: 419-482-6994

#†AFTAB, Muhammad (Hajra F. Khan)
THI/BCM Thoracic Residency Program
One Baylor Plaza, BCM 390
Houston, TX 77030
516-974-7862
draftab75@hotmail.com

* AGGETT, Paul W
666 Centre St, S
Whitby, Ontario L1N 4W7
Canada

AGRAMA, Hani M (Bobbie)
1257 Florida Ave
Rockledge, FL 32955
321-631-2277
FAX: 321-631-2279
haniagrama@aol.com
AHN, Samuel S (Mi Ryu)
University Vascular
1082 Glendon Avenue
Los Angeles, CA 90024
310-209-2011
FAX: 310-209-2113
sahn@universityvascular.com

AIELLO, Francesco A
370 East 69th street, Apt 1C
New York, NY 10021-5793
212-746-5015
faaiello@hotmail.com

AKBARI, Cameron M (Stephanie)
Washington Hospital Center
110 Irving St, NW NA-1041
Washington, DC 20010
202-877-8050
FAX: 202-877-0456
cameron.akbari@medstar.net

AL-KHOURY, Georges E
6225 Monter St, Apt E
Pittsburgh, PA 15217
alkhouryg@upmc.edu

ALEXANDER, George K (Janet)
16803 Chesterfield Bluffs Cir
Chesterfield, MO 63005-1869
314-578-5398
FAX: 636-778-8889
docgalexander@yahoo.com

ALEXANDER, J. Jeffrey (Joan)
Metro Health Medical Center
2500 MetroHealth Dr
Cleveland, OH 44109
216-778-4911
FAX: 216-778-3927
jalexander@metrohealth.org

ALEXANDER, James B (Deborah)
Cooper Medical School of Rowan University
Three Cooper Plaza, #411
Camden, NJ 08103
856-342-2151
FAX: 856-968-8446
alexanderjames@cooperhealth.edu

ALLEN, Brent T (Ellen)
St. Louis Center for Circulatory Disorders
555 N. New Dallas Rd, #265
St. Louis, MO 63141
314-991-4567
FAX: 314-991-4910
bra@ssanc.net

ALLMENDINGER, Philip D (Nancy)
134 Waterville Rd
Farmington, CT 06032
860-527-8201
FAX: 860-527-2734
dingfarm@home.com

ALMAROOF, Babatunde
Eastern Virginia Medical School
600 Gresham Drive, Suite 8620
Norfolk, VA 23507
757-622-2649
tundealmaroof@yahoo.com

ALTSHULER, Mark (Lynn)
2110 Biscayne Blvd. #301
Aventura, FL 33180-1229
FAX: 305-931-0608
maaltschuler@yahoo.com

AMANKWAH, Kwame S (Allison)
University Hospital
750 E. Adams St, Ste 8801
Syracuse, NY 13210
315-464-6241
FAX: 315-464-6238
amankwak@upstate.edu

AMBROSINO, John J (Kristin)
Cardio Thoracic Surgery Associates
540 South St, Suite 306
Greensburg, PA 15601
724-837-8959
FAX: 724-837-8984
ambro876@comcast.net

AMENDOLA, Michael F
416 Port West, Ave
Richmond, VA 23238
804-828-3211
FAX: 804-828-2744
mamendola@mcvh-vcu.edu

* Senior † New Members # Candidate § Inactive
#†AMER, Hammad
The University of Texas
6400 Fannin St, Ste 2850
Houston, TX 77030
713-486-5100
hammad.amer@uth.tmc.edu

* ANAIN, Joseph M (Anita)
Sister’s Hospital
393 Dan Troy Drive
Buffalo, NY 14221
716-633-2916
FAX: 716-837-3860
jmanainmd@aol.com

ANAIN, Paul
2121 Main St, Suite 316
Buffalo, NY 14214
716-837-2400
FAX: 716-837-3860
panain@aol.com

* ANGOTTI, Donald M (Laverne)
210 Silverado Springs Drive
Napa, CA 94558
707-224-1247
FAX: 707-224-1317
donangot@pacbell.net

ANNENBERG, Alan J (Jennifer)
4030 Smith Rd, Ste 300
Cincinnati, OH 45209
513-961-4335
FAX: 513-961-4227

ARBID, Elias J (Rita)
Commonwealth Surgical Assoc
3640 High St
Portsmouth, VA 23707
757-397-2383
FAX: 757-387-5201
arbid@massmed.org

ARTHURS, Zachary M
1570 Maple Rd
Cleveland Heights, OH 44121
216-444-3857
FAX: 216-636-1002
arthursz@mac.com

ARYAVAND, Behdad
2921 Telestar Ct, #140
Falls Church, VA 22042
aryavand@hotmail.com

ASCHER, Enrico (Katia)
Maimonides Medical Center,
Vascular Surgery
4802 Tenth Ave
Brooklyn, NY 11219
718-283-7957
FAX: 718-635-7050
eascher@maimonidesmed.org

ASH, Jennifer
Southern Illinois University School of Medicine
701 N. 1st St, Suite D 346,
PO Box 19
Springfield, IL 62794
217-545-8856
jenlash@pol.net

ATKINS, Colby P (Lori)
Surgical Assoc of Lexington, P.S.C.
1401 Harrodsburg Rd, Ste C-100
Lexington, KY 40504
859-278-2334
FAX: 859-278-0159
colby.atkins@gte.net

ATNIP, Robert G (Chantal)
MS Hershey Med Center, Surgery
500 University Dr, Rm C4628
Hershey, PA 17033
717-531-8888
FAX: 717-531-4151
ratnip@psu.edu

AUSTIN, Joseph P
400 Harbour Place Drive, #1253
Tampa, FL 33602
813-259-0921
Paustinmd@yahoo.com

* AUSTIN, Reed
1520 Marlay Dr
Los Angeles, CA 90069-1618

$ AVERBOOK, Allen W (Emily)
210 Frye Rd
Pinehurst, NC 28374
910-255-0448
FAX: 910-255-0449
Allen@averbook.net

* AVERBOOK, Beryl D (Gloria)
210 Frye Rd
Pinehurst, NC 28374-8956
310-641-7788
haverbook@aol.com
AVILA, Mario H (Anne)
7707 N. University Dr, #101
Tamarac, FL 33321
954-726-3606
FAX: 954-726-7859
mHAVILAL16@AOL.COM

* AYLWARD, Theodore D (Kathleen)
4900 Marling Drive
New Port Richey, FL 34652
727-847-5326
FAX: 727-845-0697
taylward@earthlink.net

#†AZIZ, Faisal
Jobst Vascular Institute
2109 Hughes Drive, Suite 400
Toledo, OH 43606
347-267-7358
faziz.md@gmail.com

BABU, Sateesh C (Sudhamani Rao)
Vascular Surgery/Med Arts Atrium
19 Bradhurst Ave, #700
Hawthorne, NY 10532
914-493-8800
FAX: 914-593-7857
babu6275@aol.com

BADHEY, Mohan R (Rathnamala)
170 Stirrup Lane
Syosset, NY 11791-4417
718-894-4200
FAX: 718-894-4900
badhey@optonline.net

BAGAMERI, Gabor
Thomas Jefferson University
111 S. 11th St, Gibbon Bldg 6270
Philadelphia, PA 19107
215-520-7875
gabor.bagameri@jeffersonhospital.org

* BAHUTH, Joseph J (Angele)
4006 Hilton head Way
Tarzana, CA 91356
818-881-7290
FAX: 818-345-5061
bahngie@aol.com

* BAIRD, David B (Glenda)
2425 Communications Pkwy, #914
Plano, TX 75093-8884

BAKER, J. Dennis (Kay)
VA Medical Ctr, Surg Svc (10H2)
11301 Wilshire Blvd
Los Angeles, CA 90073
310-825-3684
FAX: 310-268-4741
dennis.baker@va.gov

BALAJI, Malur R (Eileen)
Rochester Vascular Surg Assoc, P.C.
3525 Buffalo Rd
Rochester, NY 14624
585-594-2000
FAX: 585-594-2223
mrbalaji@aol.com

BALKANY, Louis (Leslie)
1614 S. Byrne Rd, #FF
Toledo, OH 43614-3464
419-382-9425
FAX: 419-382-9427
loubalkany@aol.com

BALSHI, James D (Jill)
Progressive Physician Assoc, Inc.
3735 Nazareth Rd, #206
Easton, PA 18042
610-252-8281
FAX: 610-252-8614
jbalshi@ppamail.com

* BARET, Alexander C (Rose Marie)
12 Lilac Lane
Ocean, NJ 07712-8548

BARIL, Donald T (Savannah)
University of Massachusetts Medical School
55 Lake Avenue North
Worcester, MA 01655
508-856-5599
FAX: 508-856-8329
donald.baril@umassmemorial.org

* BARKER, Wiley F (Nancy)
UCLA Medical Center
29129 Paitute Drive
Agoura, CA 91301
818-865-9904
FAX: 818-865-9901
w Barker@charter.net

BARKHORDARIAN, Siamak
The Grand
10445 Wilshire Blvd
Los Angeles, CA 90024
Siamak_Barkhordarian@yahoo.com

* Senior † New Members # Candidate § Inactive
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

BARNES, Thomas L (Maria)
Medford Surgical Practice PA
212 Creek Crossing Blvd
Hainesport, NJ 08036
609-267-1004
FAX: 609-267-1044
mspbb@hotmail.com

* BARROCAS, Albert
South Fulton Medical Center
1170 Cleveland Ave
East Point, GA 30344
404-466-1106
albert.barrocas@tenethealth.com

BASILE, Richard M (Kathleen)
Advanced Ven Care of the Berkshires
369 South St
Pittsfield, MA 01201-1501
413-347-4767
FAX: 413-442-1611
rbasile@berkshire.rr.com

BAUER, Stephen M
314 Sound Beach Ave
Old Greenwich, CT 06870-1932
917-621-7044
vasculardoc@gmail.com

BAYS, Ronald A (Sussan)
4701 Towne Centre Rd, #202
Saginaw, MI 48604
989-790-2600
FAX: 979-790-3311
ronbays1@chartermi.net

#†BAZZI, Mazen M
Genesys Regional Medical Center
104 beachwalk trail
luna pier, MI 48157
313-443-2145
abulayla79@yahoo.com

BEARE, John P (Pauline)
Peninsula Vasc Surgery Assoc
665 W. Santa Inez
Hillsborough, CA 94010
650-579-1493
FAX: 650-577-1488
beares@pacbell.net

BEAVERS, Frederick P (Cynthia Long)
Washington Hospital Center
106 Irving St, NW, POB N. 3150
Washington, DC 20010
202-877-8050
FAX: 202-877-0456
suavejazz@hotmail.com

BECHARA, Carlos F (Marwa)
Baylor College of Medicine
2002 Holcombe BLVD (112)
Houston, TX 77030
832-331-9434
FAX: 713-794-7352
bechara@bcm.edu

* BECHER, Robert M (Virginia)
Park Surgical Associates
One Pearl St, #2700
Brockton, MA 02301
508-584-4104
FAX: 508-584-4105
rmbecher@comcast.net

BEEMAN, Brian R
Pennsylvania Hospital
834 Chestnut St, Apt 1030
Philadelphia, PA 19107
215-829-5000
bman62707@yahoo.com

* BEHREND, A. James (Patricia)
PO Box 2005
El Cajon, CA 92021
619-462-5916
FAX: 619-334-1313
ajeff2@juno.com

BELKIN, Michael (Barbara)
Brigham & Women’s Hospital
75 Francis St, Div Vascular Surgery
Boston, MA 02115
617-732-6816
FAX: 617-730-2876
mibelkin@partners.org

BELL, Donald D (Nancy)
Northeast Vasc & General Surg
110 No. 16th St, #6
Norfolk, NE 68701-3621
402-371-4471
FAX: 402-371-4454
SCVS • 40TH ANNUAL SYMPOSIUM ON VASCULAR SURGERY

BENCKART, Daniel H (Barbara)
Cardio Thoracic Surgery Assoc
490 E. North Ave, Ste#302
Pittsburgh, PA 15212
412-359-8820
FAX: 412-359-3878
dbenckar@aherf.edu

BENJAMIN, Marshall E (Linda)
University of Maryland Vascular Surgery
301 Hospital Dr
Glen Burnie, MD 21061
410-553-8300
FAX: 410-553-8349
mabenjamin@bwmc.umms.org

BERG, Richard A (Mary)
St. Clair Vascular
23829 Little Mack, Ste 200
St. Clair Shores, MI 48081
586-772-4444
FAX: 586-772-4411
bergr@scvapc.com

B ERKOWITZ, Henry D (Julie)
745 Camp Woods Rd
Villanova, PA 19085
610-688-7662
FAX: 610-688-7894

BERMAN, Joel A (Lorraine)
Vascular Center, Pinehurst Surgical Clinic
5 First Village Dr, PO Box 2000
Richmond, NC 28374-2000
910-235-2915
FAX: 910-235-2723
jberman@pinehurstsurgical.com

BERMAN, Scott S (Christi)
Tucson Vascular Surgery Biomedical Engineering
1815 W. St. Mary’s Rd
Tucson, AZ 85745
520-628-1400
FAX: 520-628-4863
sberman@azvasc.com

BERNIK, Thomas R (Stephanie)
7 Piemont Rd
Rockleigh, NJ 07647-2715
212-838-3055
FAX: 212-691-0568
bernik@optonline.net

BERTIN, Vincent J (Andrea)
Middleburg Heights Medical Arts Center, #201
18660 E. Bagley Rd
Cleveland, OH 44130
440-243-0100
FAX: 440-243-7118
vbertin@aol.com

BHATIA, Devinder S (Gina)
SE Texas Cardiovascular PA
8901 FM 1960 Bypass Rd, W. #303
Humble, TX 77338-4019
281-397-7000
FAX: 281-397-7061
dbhatiamd@aol.com

BHENDE, Siddharth K
Arizona Vascular Surgical Consultants
400 North Coronado St, Apt 2018
Chandler, AZ 85224
209-986-1297
skb002@yahoo.com

BIGGS, Kristen L
University of New Mexico, Department of Surgery
MSC10, 5610, 1 University of New Mexico
Albuquerque, NM 87131-0001
505-272-5850
kbiggs@salud.unm.edu

BIUCKIANS, G. Tom
2000 Washington St, MOB 224
Newton, MA 02462
617-965-9611
bern@partners.org

BISMUTH, Jean
Baylor College of Medicine
1709 Dryden St, Suite 1500
Houston, TX 77030
713-798-6078
FAX: 713-798-8941
jbismuth@tmhs.org

BIUCKIANS, G. Tom
2000 Washington St, MOB 224
Newton, MA 02462
617-965-9611
bern@partners.org

* Senior † New Members # Candidate § Inactive
BLACKSHEAR, William M, Jr
Vascular Institute of FL
7292 4th St, N.
Suite B
St. Petersburg, FL 33702
727-896-8149
FAX: 727-823-8606
dr.blackshear@vascinsfla.com

BLEBEE, John (Judy)
University of Oklahoma College of Medicine
4502 E. 41st St
Tulsa, OK 74135
918-744-3650
FAX: 918-744-3367
john-blebea@ouhsc.edu

BLOCHLE, Raphael
Erie County Medical Center
462 Grider street, 3rd Floor
DKMB
Buffalo, NY 14215
716-898-5187
FAX: 716-898-5029
rblochle@buffalo.edu

BOGLEY, William M, Jr
Department of Surgery
East Carolina University School of Medicine
Greenville, NC 27858-4353
252-816-4668
FAX: 252-744-3794
bogeyw@mail.ecu.edu

BOHANNON, W. Todd
Scott and White Clinic
2401 South 31st St
Temple, TX 76508
254-724-0657
FAX: 254-724-5978
wbbohannon@swmail.sw.org

* BONILLA, Kenneth B (Ilene)
4152 Oakhollow
Claremont, CA 91711

* BORGE, James D (Amy)
1868 Silverado Trail
Napa, CA 94558
707-224-2977

BOTTSFORD, John E, Jr (Jane)
383 Serpentine Dr, Ste B
Spartanburg, SC 29303
864-560-7003
FAX: 864-560-7018
jjbott@aol.com

BOULES, Tamer N (Ellen M, Boules)
Comprehensive Vascular and Endovascular Care
22250 Providence Drive, Suite 555
Southfield, MI 48075
248-424-5748
FAX: 248-443-1706
tboules@compvasccare.com

BOVE, Paul Guy (Kristen)
William Beaumont Hospital
3601 W. 13 Mile Rd
Royal Oak, MI 48073
248-551-1465
FAX: 248-551-3023
pgbove@beaumont.edu

BOWER, Thomas C (Jody)
Mayo Clinic
200 First St, SW
Rochester, MN 55905
507-284-1443
FAX: 507-266-7156
bower.thomas@mayo.edu

BOWMAN, Jonathan N
Walter Reed Army Medical Center
6900 Georgia Ave, NW, 6th Floor
Ward 64
Washington, DC 20307
917-399-0993
jn54v@hotmail.com
BRAHMANANDAM, Soma M
(Hariharan Ramakrishnan)
Cleveland Clinic Foundation
9500 Euclid Ave
Cleveland, OH 44195
508-277-1985
shomab@gmail.com

BREITBART, Gary B (Dorothy)
Garden State Surgical Assoc
1511 Park Avenue
South Plainfield, NJ 07080
908-561-9500
FAX: 908-561-7162

BRENER, Bruce J (Ellen)
Vascular Associates of NJ
200 South Orange Ave
Livingston, NJ 07039
973-322-7233
FAX: 973-322-7499
bruce_brener@hotmail.com

* BRESLAU, Roger C (Betty Zane)
4371 Fallsbrae Rd
Fallbrook, CA 92028-8906
760-728-9424

BREWSTER, David C (Gloria)
Mass General Hospital
15 Parkman St, Apt 440
Boston, MA 02114
617-523-4293
FAX: 617-726-8230
dcbrewster@partners.org

BRIGHAM, Robert A (Paula)
Reading Vasc Surg Specialists Ltd
301 So. 7th Avenue, #1070
West Reading, PA 19611
610-378-9667
FAX: 610-378-9101
brighamr@readinghospital.org

BRIONES, Renato J (Carmelita)
Virtua Medical Group
212 Creek Crossing Blvd
Hainesport, NJ 08036-2766
609-267-1004
FAX: 609-265-8668
rjbriones@aol.com

BROWN, Jeff A (Lauren)
Virginia Surgical Associates
8237 Meadowbridge Rd,
Mechanicsville, VA 23116-2336
804-288-1953
FAX: 804-282-1046
hymanl@vasurgical.com

† BROWN, Kellie R
Med College of WI, Div Vasc Surg
9200 W. Wiscosin Ave
Milwaukee, WI 53226
414-456-6970
krbrown@mcw.edu

BROWN, Lyle L
1023 N. Mound St, Ste B
Nacogdoches, TX 75961
dubllb@home.com

† BROWN, William H (Clare)
3800 E. Stanford Dr
Cherry Hill Village, CO 80111
415-342-6465
FAX: 415-342-9153

* BROWNING, Louis D, Jr (Jacqueline)
75 Partridge Rd
Stamford, CT 06903
203-323-1782
FAX: 203-327-0341

* BRUENAU, Luc
3875 St Urbain, #507
Canada
514-843-8163
FAX: 514-843-8163

BRYAN, Douglas H (LaDonna)
8410 Mason Hill Rd
Woodstock, IL 60098
937-276-2642
FAX: 937-276-4419
dougbryan937@msn.com

* Senior † New Members # Candidate § Inactive
BUCHBINDER, Dale (Sharon)
Good Samaritan Hospital
5601 Loch Raven Blvd,
Ste RMB 200
Baltimore, MD 21239
410-849-2393
FAX: 410-849-3435
dale.buchbinder@medstar.net

* BUCK, Bruce A (Andrea)
14206 So. Canyon Drive
Phoenix, AZ 85048-8306
480-759-7321
bbuck7005@aol.com

BUCKLEY, Clifford J (Terry)
Scott & White Hospital
2401 S. 31st St
Temple, TX 76508
254-724-0658
FAX: 254-724-3173
chuckley@swmail.sw.org

BUKHARI, Hassan (Talat)
621 No. Hall St, #520
Dallas, TX 75226
214-826-2114
FAX: 214-821-9325
hibukhari@sdaglobal.net

BUNCH, Christopher T
Duluth Clinic
400 East Third St
Duluth, MN 55805
218-786-3231
FAX: 218-726-1273
cbunch@smdc.org

BUNT, TJ (Elizabeth)
University of South Carolina, Surg
Two Richland Medical Park,
Ste #402
Columbia, SC 29203
803-256-2657
FAX: 803-292-0492
tjbunt@medpark.sc.edu

#* BURESH, Jarrod A (Emily)
Mt. Clemens Regional Medical Ctr
1000 Harrington Blvd
Mt. Clemens, MI 48043
313-595-7300
jabber49@gmail.com

BUCK, Bruce A (Andrea)
14206 So. Canyon Drive
Phoenix, AZ 85048-8306
480-759-7321
bbuck7005@aol.com

BUCKLEY, Clifford J (Terry)
Scott & White Hospital
2401 S. 31st St
Temple, TX 76508
254-724-0658
FAX: 254-724-3173
chuckley@swmail.sw.org

BUKHARI, Hassan (Talat)
621 No. Hall St, #520
Dallas, TX 75226
214-826-2114
FAX: 214-821-9325
hibukhari@sdaglobal.net

* BUNCH, Christopher T
Duluth Clinic
400 East Third St
Duluth, MN 55805
218-786-3231
FAX: 218-726-1273
cbunch@smdc.org

BUNT, TJ (Elizabeth)
University of South Carolina, Surg
Two Richland Medical Park,
Ste #402
Columbia, SC 29203
803-256-2657
FAX: 803-292-0492
tjbunt@medpark.sc.edu

#* BURESH, Jarrod A (Emily)
Mt. Clemens Regional Medical Ctr
1000 Harrington Blvd
Mt. Clemens, MI 48043
313-595-7300
jabber49@gmail.com

BURKE, Paul M, Jr (Honey)
Vascular Associates
10 Research Place, #207
North Chelmsford, MA 01863
978-250-9500
FAX: 978-250-3969

BUSH, Harry L, Jr (Ellen)
New York Hospital, Cornell Medical Center
525 E. 68th St, Payson, 708A
New York, NY 10021
212-746-5392
FAX: 212-746-8854
hlb2001@med.cornell.edu

BUSH, Ruth L (William)
Scott & White Hospital
2401 S. 31st St
Temple, TX 76508
254-724-0658
r bush@swmail.sw.org

BYRNE, Christopher
University of Maryland
22 S. Greene St
Baltimore, MD 21201
410-328-5840
chyrne@smail.umaryland.edu

CACIOPPO, Phillip L
Phillip L Cacioppo, MD, SC
800 Blesterfield Rd, Wimmer
Suite 202
Elk Grove Village, IL 60007
847-806-0106
FAX: 847-806-9323
p.cacioppo@comcast.net

* CAFFERATA, H. Treat (Patty)
2620 Spinnaker Dr
Reno, NV 89519-5752
775-329-6477
FAX: 775-329-6477
tcafferata@powernet.net

CALLIGARO, Keith D (Ina Lee)
Pennsylvania Hospital
700 Spruce St, #101
Philadelphia, PA 19106
215-829-5000
FAX: 215-627-0578
kcalligaro@aol.com
CALTON, William C, Jr (Rheba)
225 E. Wood St
Spartanburg, SC 29303
864-560-1577
FAX: 864-560-1590
ccalton@srhs.com

* CALVIN, James W (Carrie)
47-515 Via Florence
La Quinta, CA 92253-2122
760-771-5117
FAX: 760-564-4840
jcalvin@dc.rr.com

* CAMISHION, Rudolph C
UMDNJ, RW Johnson Med School
3 Cooper Plaza, #411
Camden, NJ 08103
856-342-3412
FAX: 856-365-1180
camishr1@umdnj.edu

CAMPBELL, Joseph J (Mary)
816 Belvedere St
Carlisle, PA 17013
717-243-2244
FAX: 717-241-5102

* CAMPBELL, Robert W (Caren)
2602 Lorencita Drive
Santa Maria, CA 93455
805-922-8387

CANTELMO, Nancy L
(Michael Rauworth)
Veinsolutions
92 Montvale Ave, #3200
Stoneham, MA 02180
781-438-8117
FAX: 781-438-8116
nlc31@comcast.net

CAPARRELLI, David J (Tara)
The Arizona Heart Institute
2632 N. 25th St
Phoenix, AZ 85006
602-266-2200
FAX: 410-955-3809
dcaparrelli@azheart.com

CAPULONG, Rene AB (Zenaida)
800 West Plymouth
DeLand, FL 32720
386-736-7600
FAX: 386-738-4649

CARDELLA, Jonathan A
St Michaels Hospital/
Toronto General
711 Bay St, Unit 415
Toronto, ON M5G 2J8
416-577-2067
jonathan.carrella@utoronto.ca

CARPENTER, Jeffrey P (Judith)
Robert Wood Johnson Med
School at Camden
3 Cooper Plaza Suite 411
Camden, NJ 08103
856-342-3496
FAX: 856-968-8449
carpenterjeffrey@cooperhealth.edu

* CARROLL, Robert M (Sandra)
2241 Century Hill
Los Angeles, CA 90067-3506
310-657-6991
FAX: 310-556-8621

CARSTEN, Christopher G, III
(Jennifer)
Greenville Hospital System
701 Grove Rd
Greenville, SC 29605
864-435-7886
FAX: 864-435-1320
ccarsten@ghs.org

CARVER, Robert
University of Kentucky
department of surgery,
800 Rose St
Lexington, KY 40536
859 323-6346 ext 278
robert.carter@uky.edu

CARY, Stephen C (Christine)
743 No. Main St
Ashland, OR 97520
541-488-4464
FAX: 541-488-3772

CASEY, Kevin M
Naval Medical Center San Diego
34800 Bob Wilson Drive
San Diego, CA 92134
619-208-5531
irishnola@yahoo.com

* Senior † New Members # Candidate § Inactive
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

Castronuovo, John J., Jr
(Malin)
York Hospital
1001 S. George St, Dept of Surgery
York, PA 17403
717-851-2772
FAX: 717-851-4513
jcastronuovo@wellspan.org

Celis, Rolando
UPMC
200 Isthrop St A-1017
Pittsburgh, PA 15213
402-517-1766
rceva@hotmail.com

Cerrato, Walter A. (Mary)
3750 Raney Rd
Titusville, FL 32780
407-268-0720
cerratow@bellsouth.net

Chacko, John
John D. Dingell Medical Center
4646 John R. Dept of Surgery
Detroit, MI 48201
734-399-0886
FAX: 734-399-1191

Chaer, Rabih A
UPMC Presbyterian
200 Lothrop St, Suite A-1011
Pittsburgh, PA 15213
412-802-3025
chaerra@upmc.edu

Chaikof, Elliot L. (Melissa)
Beth Israel Deaconess Medical Center
110 Francis St, Ste 9F
Boston, MA 02115
617-632-9581
FAX: 617-632-9701
echaiikof@bidmc.harvard.edu

Chandra, Ankur
University of Rochester Medical Center
601 Elmwood Avenue
Box 652
Rochester, NY 14610
518-262-8720
FAX: 518-262-6720
ankur.chandra@urmc.rochester.edu

Chang, Benjamin B. (Heather)
The Vascular Group, PLLC
43 New Scotland Ave, MC 157
Albany, NY 12208
518-484-3430
FAX: 518-484-3482
jbchangmd@aol.com

Chang, John B. (Lucy)
Long Island Vascular Center
1050 Northern Blvd
Roslyn, NY 11576
516-484-3430
FAX: 516-484-3482
jbchangmd@aol.com

* Chang, Walter Y.M. (Wilma)
2228 Liliha St, #406
Honolulu, HI 96817
808-537-1916

Charlton-Ouw, Kristofer M.
(Larissa Meyer)
University of Texas – Houston
6400 Fannin St
Suite 2850
Houston, TX 77030
713-486-5100
FAX: 713-441-6298
kristofer.charltonouw@uth.tmc.edu

Charney, Kim J. (Cher)
1140 W. LaVeta Ave, #620
Orange, CA 92868-4223
714-550-9900
FAX: 714-550-9307
chaudhry.saqib@me.com

Chaudhry, Saqib S. (Suzan)
2001 Marcus Ave, Suite S50
Lake Success, NY 11042
516-328-9800
FAX: 516-328-9801
chaudrya@al.com
CHEEMA, Zulfiqar F
(Misbah Chondhri)
The Methodist Hospital
6550 Fannin St, Suite 1401
Houston, TX 77004
832-637-5183
zfcheema2@tmhs.org

CHEN, Brian
Eastern Virginia Medical School
600 Creighton Drive, Suite 820
Norfolk, VA 23507
757-622-2649
FAX: 757-961-6440
drbrainchen@gmail.com

CHENG, Charlie
Baylor College of Medicine
One Baylor Plaza, Ste 404D
Houston, TX 77030
713-798-8629
FAX: 713-798-8941
chuckiecheng@hotmail.com

CHERRY, Kenneth J, Jr (Robin)
University of VA Hospital
PO Box 800679
Charlottesville, VA 22908
434-243-7052
FAX: 434-982-1026
kjc5kh@virginia.edu

CHO, Jae-Sung (Michelle)
University of Pittsburgh Surgery
200 Lothrop St, PHU A1011
Pittsburgh, PA 15213
412-648-4000
chojs@msx.upmc.edu

CHO, Jenny G
Vascular Surgery Associates, P.A.
7420 Switzer
Shawnee, KS 66203
913-909-1219 (home)
FAX: 913-262-3170
jennychomd@gmail.com

CHOI, Lori
Baylor College of Medicine
1709 Dryden, Suite 1500
Houston, TX 77030
713-798-8412
lchoi@bcm.tmc.edu

CHONG, Terry
University of Southern California (USC)
629 Traction Ave Apt 636
Los Angeles, CA 90013
213-369-1963
terry.chong@surgery.usc.edu

CHOUDHRY, Karamat U (Laila)
6132 Forest Highlands Dr
Fort Worth, TX 76132
817-346-6551
Pappydoc@aol.com

CHU, Michael H, (Ilsim Kim)
Crozer Chester Medical Center/Philadelphia College
127 Ashley Drive
Feasterville, PA 19053
856-630-0684
innocentmike@gmail.com

CIKRIT, Dolores F
(Joseph Schmit)
Indiana Univ School of Medicine
1001 W. 10th St OPE 3rd Floor
Indianapolis, IN 46202
317-630-6542
FAX: 317-639-0271
dcikrit@iupui.edu

CIOCCHI, Rocco G (Lauren)
St. Elizabeth’s Medical Center
11 Nevins St, Suite 306
Boston, MA 02135
617-779-6215
FAX: 617-779-6223
Rocco.Ciocca@caritaschristi.org

CIOCON, Hermogenes L (Celia)
871 Allwood Rd
Chilton, NJ 07013
973-779-2270
FAX: 973-779-5250

CIRES, Giancarlo (Maria)
145 Isle Verde Way
Palm Beach Gardens, FL 33418
787-432-3668
gciresmd@gmail.com

CISEK, Paul L (Kathie)
89 So. Patterson Avenue
Santa Barbara, CA 93111-2003
805-898-3140
FAX: 805-898-3117
pcisek@sansum.com

* Senior † New Members # Candidate § Inactive
CLAIR, Daniel G (Patricia)
Cleveland Clinic Foundation
9500 Euclid Avenue, F30
Cleveland, OH 44195
216-444-3857
FAX: 216-444-9324
claird@ccf.org

CLARK, Nancy S (Kevin)
560 Moorings Circle
Arnold, MD 21012
410-554-6400
FAX: 410-554-6797
nancy.s.clark@medstar.net

CLARKE, John M (Kit)
960 7th Ave N.
St. Petersburg, FL 33705-1347
727-345-2929
FAX: 727-345-0340

COHEN, J. Louis (Elaine)
Vascular Surgery Assocs
8631 West 3rd St
Los Angeles, CA 90048
213-652-8132
FAX: 310-659-3815
vasculardocs2002@yahoo.com

COHEN, William B (Joy)
149 S. Barrington Ave, #806
Los Angeles, CA 90049-3310
310-887-0500
FAX: 310-889-1912
wbcohen@aol.com

COHEN, Michael S (Roberta)
Berkshire Surgical Assoc
777 North St.
Pittsfield, MA 01201-4127
413-445-6420
FAX: 413-499-4907
mscohn24md@aol.com

CONNOLLY, Peter
New York Weill Cornell Medical Center
525 E. 68th Payson 707
New York, NY 10021
646-660-2240
pec9018@gmail.com

CONRAD, Mark F (Jennifer)
Massachusetts General Hospital
13 Parkmann St WAC 440
Boston, MA 02114
617-724-7660
FAX: 617-643-4714
mconrad@partners.org

CONSTANTINOU, Constantinos
University Hospitals Case Medical Center
11100 Euclid Avenue, Division of Vascular
Cleveland, OH 44106
570-951-7199
konteacy@aol.com
* COOK, Charles H (Sandie)
6375 Lardanel Ln
Anderson, CA 90607
530-365-2165
farmdale43-biz@yahoo.com

† COOK, Richard B
University of Tennessee Medical School
1924 Alcoa Hwy., Box U-11
Knoxville, TN 37920
865-544-9230
FAX: 865-544-8894
rcook@mc.utmck.edu

* CORNETT, VE (Lynn)
55 Cross Park Court
Greenville, SC 29605
803-242-9915
FAX: 884-233-3732

CORRIERE, Matthew A (Amy)
Emory University School of Medicine
335 Lamont Drive
Decatur, GA 30030
404-561-2821
FAX: 404-727-3396
matthewcorriere@gmail.com

CORSOIN, John D
NMVAHCS/Bldg 41
1501 San Pedro SE
COS Office, 4B-123A
Albuquerque, NM 87108-5154
505-263-1711
FAX: 505-256-5743
john.corson2@va.gov

COTTRELL, Earl D
4150 Squaw Creek Court
Las Vegas, NV 89120
702-228-8600
FAX: 702-458-4828
edcmd@embarqmail.com

* COUNTRYMAN, L. Kenneth (Yolanda)
1147 Pine St, Apt A
So. Pasadena, CA 91030-4361
626-287-9611
FAX: 626-799-2094
yoli375@aol.com

* COURIS, George D (Marju)
450 E. Strawberry Dr, #55
Mill Valley, CA 94941-3220
415-346-6001

CREPPS, J. Thomas, Jr (Irma)
Colorado Springs Vascular, P.C.
175 So. Union Blvd, #320
Colorado Springs, CO 80910
719-477-1033
FAX: 719-477-1037
tomcrepps@hotmail.com

* CREW, John R (Winnie)
PO Box 2299
Daly City, CA 94017
650-994-2700
FAX: 650-755-0410
jcrewmd@att.net

CUNNINGHAM, Christopher G
McLeod Regional Medical Center
101 S. Ravenel St, Suite 230
Florence, SC 29506
843-777-7043
FAX: 843-777-7041
CCunningham@McLeodHealth.org

* CURI, Eli (Joanne)
315 E. Northfield
Livingston, NJ 07039
201-992-2303
FAX: 201-992-2765

CURLETTI, Eugene L (Dolly)
Berkshire Surg Assoc
777 North St, #407
Pittsfield, MA 01201-4127
413-445-6420
FAX: 413-499-8542
elchunter@aol.com

D’SOUZA, Sean B
Cardiovascular Consultants LTD
3805 East Bell Rd, #3100
Phoenix, AZ 85032
602-867-8644
kfransisco@cvcheart.com

DALSING, Michael C (Rosa)
Indiana Univ Medical School
1801 N. Senate, MPC II, #3500
Indianapolis, IN 46202
317-962-0283
FAX: 317-962-0289
mdalsing@iupui.edu

* Senior † New Members # Candidate § Inactive
DARDIK, Alan (Susan)
Yale University School of Medicine
10 Amistad St Rm 437,
PO Box 208089
New Haven, CT 06520-8089
203-737-2082
FAX: 203-737-2290
alan.dardik@yale.edu

DARDIK, Herbert (Janet)
Englewood Hospital Med Center
350 Engle St
Englewood, NJ 07631
201-894-3141
FAX: 201-541-2965
hardik@ehmc.com

DARLING, R. Clement, III (Julie Demeter Darling)
The Vascular Group, PLLC,
Albany Med Center Hospital
43 New Scotland Ave, MC-157
Albany, NY 12208
518-262-8720
FAX: 518-262-6720
darlingc@albanyvascular.com

*D D A R T , C h a r l e s H , J r
1322 Beachmont St
Ventura, CA 93001
805-644-2685
FAX: 805-644-5496
guy-dart@hotmail.com

DASH, Sarat (Sumitra)
71 Rt 23 N., 1 Box 59
Hamburg, NJ 07419
201-827-2800
FAX: 201-827-1495

* D A S K A L A K I S , M i c h a e l K
(Anastasia)
PO Box 3880
Anaheim, CA 92803-3880
714-635-3931

DAVIS, Mark G
The Methodist Hospital
6550 Fannin Smith 1401
Houston, TX 77030
713-441-5200
FAX: 713-441-3058
mark.daviesmdphd@gmail.com

* DAVILA SANTINI, Luis R
(Lisa dos Santos)
North Shore University Hospital,
LIJ Health System
303 E. 60th St, Apt 5A
New York, NY 10022
516-233-3643
FAX: 516-233-3733
davilaluis1@yahoo.com

* DAVIS, Robert C (Deanna)
210 Crocker Avenue
Piedmont, CA 94410
510-547-4195

DAWSON, David L (Susan)
UC Davis Vascular Center
4860 Y. St, Suite 3400
Sacramento, CA 95817
916-734-8122
FAX: 916-734-2026
david.dawson@ucdmc.ucdavis.edu

D A Y , J a r r o d D
Eastern Virginia Medical Center
3252 Herring Way
Chesapeake, VA 23323
804-301-3167
FAX: 757-961-6440
demetrius202@yahoo.com

DEATON, David H
(Lorraine Tafra)
1593 Piscataway Rd
Crownsville, MD 21032
202-444-1265
FAX: 202-444-6498
dltdvasc@aol.com

D E C A M P , B y r o n S
4089 Hogan Dr, Unit 2305
Tyler, TX 75709-7003
sethdecamp@yahoo.com

* DECKOFF, Stephen L
NY Hospital Medical Center Queens
56-45 Main St
Flushing, NY 11355
718-445-0220

DEEMER, Andrew R (Lisa)
3998 Vista Way, #C200
Oceanside, CA 92056
760-724-5352
FAX: 619-724-5447
* DEFEO, Anthony P (Sylvia)
 5799 Persimmon Way
 Naples, FL 34110
 tonydefeomd@aol.com

DEITCH, Jonathan S
Staten Island University Hospital
256 Mason Ave, Bldg B, 2nd Floor
Staten Island, NY 10305
718-226-6800
FAX: 718-226-1295
jdeitch123@yahoo.com

* DELAURENTIS, Dominic A
 1025 Westview St
 Philadelphia, PA 19119-3718
 757-220-2592
 FAX: 757-220-2987
ddelaurente@aol.com

* DELGADO, Roger R, Jr (Linda)
 10320 Cherry Ridge Rd
 Sebastopol, CA 95472
 707-829-2082
 FAX: 707-829-2183
rddelgado@wildblue.net

* DELIMAN, Robert (Renate)
 324 West Walnut Avenue
 Monrovia, CA 91016
 626-359-3594
 FAX: 818-303-4937

* DENBO, Howard E (Lana)
 3301 Washington St
 San Francisco, CA 94118
 415-776-9557
 FAX: 415-776-9557
hdenbo@sbgglobal.net

DERNBACH, Timothy A (Sheryl)
2900 12th Ave North, #305 East
Billings, MT 59101
406-238-6820
FAX: 406-238-6838

DEROJAS, Juan J
200 So. River St, Plains Twnshp
Wilkes-Barre, PA 18705

† DESCHNER, William P (Lurett)
Indiana/Ohio Heart, P.C.
7910 W. Jefferson, #102
Fort Wayne, IN 46804
260-436-2424
FAX: 260-436-2922
wpdeschner@gmail.com

* DESHMUKH, Narayan (Lakshmi)
 Guthrie Clinic
 112 Joy St
 Sayre, PA 18840
 570-888-6061
 FAX: 570-882-2033
 coloneldeshmukh@yahoo.com

† DEXTER, David J, II (Lisa)
 305 East 86th St, Apt 19 HW
 New York, NY 10028
 315-254-7230
ddextermd@gmail.com

DI FIORE, Richard
Jobst Vascular Center
2109 Hughes Dr, Suite 400
Toledo, OH 43606
419-291-2275
rdifioremd@yahoo.com

* DIAZ, Carlos A
 VA Hospital, Dept Surgery
 800 Poly Place
 Brooklyn, NY 11209

* DIAZ-ARRASTIA, Ramon S
 (Elihut Rauelo)
 16550 Tampico Way
 Galveston, TX 77554
 713-652-3081

* DICKSON, Alfred H (Nancee)
 5428 NW Wahkeena Ln
 Portland, OR 97229-7150

* Senior † New Members # Candidate § Inactive
DIETZEK, Alan M (Bonnie)
111 Osbourne St
Medical Arts Building
Danbury, CT 06810
203-794-9555
anal.dietzek@danhosp.org

DIGIOVANNI, Robert J (Judith)
One Medical Center Blvd, Ste #101
Chester, PA 19013
610-876-3377
FAX: 610-876-6230

DILLAVOU, Ellen D
University of Pittsburgh Medical Center
Suite A-1011, PUH, 200 Lothrop St
Philadelphia, PA 15213
412-648-9089
FAX: 412-647-0289
dillavoued@upmc.edu

DIMUZIO, Paul J (Carla)
Thomas Jefferson University
111 South 11th St
Philadelphia, PA 19107
215-955-8304
FAX: 215-923-0835
paul.dimuzio@jefferson.edu

*DINEEN, Joseph P (Ila)
18 Indian Trail
Woodbridge, CT 06525
203-389-0596
FAX: 203-389-4025
dineen@optonline.net

DIVINAGRACIA, Thomas V
CT Surgical Group
15 New St, #227
West Hartford, CT 06107
860-559-0180
tdivinagracia@tsurgical.com

* DOIIRON, John C, Jr (Jean)
1239 Cassia Trl
Palm Springs, CA 92262-9770
831-685-8233

DONALDSON, Magruder C (Jennifer)
Metro West Medical Center
85 Lincoln St
Framingham, MA 01702
508-383-1533
FAX: 508-383-1746
craig.donaldson@mwm.com

DONAYRE, Carlos E (Dorene)
3324 Coli Rd
Rancho Palos Verdes, CA 90275
310-222-2704
FAX: 310-787-1899
cdonayre@cox.net

*DORAZIO, Richard A (Sharon)
4747 Sunset Blvd
Los Angeles, CA 90027
213-667-4854
FAX: 213-667-8747
richard.a.dorazio@kp.org

DOSCHER, William (Margery)
2001 Marcus Ave, Ste #500
Lake Success, NY 11042
516-328-9800
FAX: 516-328-9801
doschermd@aol.com

DOSLUOGLU, Hasan H (Mine)
VA Western NY Healthcare System
3495 Bailey Ave, Surgery
Buffalo, NY 14215
716-862-8937
FAX: 716-862-8600
dosluoglu@yahoo.com

DOUGHERTY, Matthew J (Mary Sue)
700 Spruce St, #101
Philadelphia, PA 19106
215-829-5000
FAX: 215-627-0578
mattdough@aol.com

DRUMMOND, Michael A (Carol)
Vascular Associates of Birmingham
817 Princeton Ave SW, Ste #306
Birmingham, AL 35211
205-783-0160
FAX: 205-788-6249
madmdpc@yahoo.com
DRYJSKI, Maciej L (Hanna)
Millard Fillmore Hospital, SUNY
3 Gates Circle, Dept of Surgery
Buffalo, NY 14209
716-887-4223
FAX: 716-887-4220
dryjski@acsu.buffalo.edu

#†DUDKIEWICZ, Michael
NYU Langone Medical Center
305 Lexington Ave, #6D
New York, NY 10016
305-710-6983
michael.dudkiewicz@nyumc.org

* DULAWA, Leopoldo (Kay)
156 Plantation Circle S
Ponte Vedra Beach, FL 32082-3930
619-456-5038

DUNCAN, Audra A
Mayo Clinic
200 First St SW, Gonda 4 South
Rochester, MN 55905
507-284-4751
FAX: 507-266-7156
duncan.audra@mayo.edu

* DUNN, Elwin M (Beth)
PO Box 269
Santa Ysabel, CA 92070

DURHAM, Joseph R (Marianne)
Cook County Hospital
10347 S. Longwood Drive
Chicago, IL 60643-2610
708-799-8305
FAX: 708-799-2261
drhoser@aol.com

DUY, A. Nguyen D (Kim Hue)
11180 Warner Ave, #161
Fountain Valley, CA 92708-4055
714-557-2905
FAX: 714-557-9896

EAGLETON, Matthew J
(Sunita Srivastava)
Cleveland Clinic Foundation
9500 Euclid Ave, Vascular Surg H32
Cleveland, OH 44195
216-445-1167
FAX: 216-444-9324
eagletm@ccf.org

EASTMAN, A. Brent (Sarita)
Scripps Health
4275 Campus Point Court
San Diego, CA 92121
619-626-6350
FAX: 858-678-6556
eastman.brent@scrippshealth.org

#†EHLERT, Bryan
Pitt County Memorial Hospital/
East Carolina University
115 Heart Drive
Greenville, NC 27834
252-744-7716
ehlertb@ecu.edu

EICHLER, Charles M
University California San
Francisco
2123 Pierce
San Francisco, CA 94115
415-353-4366
FAX: 415-353-4370
eichlerc@surgery.ucsf.edu

* EIDEMILLER, Larry R (Pauline)
1130 NW 22nd Ave, #500
Portland, OR 97210-2976
503-229-7339
FAX: 403-229-7938

EIDT, John F (Lacy)
Univ of AR for Med Sciences
4301 W. Markham, Slot 520-2
Little Rock, AR 72205
501-686-6176
FAX: 501-686-5328
eidtjohnl@uams.edu

EISENBERG, Joshua A
(Tara Eisenberg)
Thomas Jefferson University
111 South 11th St, Suite 6270
Gibbon
Philadelphia, PA 19107
215-935-8904
drjoshd@gmail.com

EL SAYED, Hosam F (Nadia)
The Methodist Hospital
6550 Fannin
Smith Tower, Suite 1401
Houston, TX 77030
2813891532
hfarouk55@hotmail.com

* Senior † New Members # Candidate § Inactive
ELIAS, Steven (Maria)
Englewood Hospital
350 Engle St
Englewood, NJ 07631
201-816-0666
FAX: 201-894-9951
veinnovations@aol.com

ELLISON, Robert G, Jr (Penny)
Ellison Vein Institute
836 Prudential Dr, Ste #1405
Jacksonville, FL 32207
904-388-7521
FAX: 904-388-3541
dre@ellisonvein.com

ELLISON, Jennifer S
(Engle, Jennifer)
3290 W. Big Beaver Rd, 410
Troy, MI 48084
248-816-6300
FAX: 248-816-6335
jsengle@umich.edu

ENGLE, Jennifer S
(Paul S. Hartley)
3290 W. Big Beaver Rd, 410
Troy, MI 48084
248-816-6300
FAX: 248-816-6335
jsengle@umich.edu

ELLMAN, Barry R (Nadja)
98 James St, #100
Edison, NJ 08820
732-906-8501
FAX: 732-906-8502
bel44@verizon.net

ELMORE, James R (Susan)
Section of Vascular Surgery
Geisinger Medical Center
Danville, PA 17822-2770
570-271-6369
FAX: 570-271-5840
jelmore@geisinger.edu

ELSHIRE, H. Donel (Roberta)
412 W. Carroll Ave
Glendora, CA 91741
626-335-1887

EMERY, Clyde K, Jr
23451 Madison St, #250
Torrance, CA 90705
213-791-0083

ENDEAN, Eric D (Deborah)
Univ of KY Medical Center
800 Rose St, Dept of Surgery, C-213
Lexington, KY 40536
859-323-6346
FAX: 859-323-6840
dnde0@uky.edu

ERBA, Dominic M
1207 Fairchild Court
Woodland, CA 95695
916-662-3961
FAX: 916-666-7255

ERDOES, Luke S (Vicky)
2108 E. 3rd St
Chattanooga, TN 37404-2600
423-629-1491
FAX: 423-629-1493
erdoes@comcast.net

ERNST, Calvin B (Elizabeth)
3904 N. Fairway Drive
Jupiter, FL 33477
561-214-3580
FAX: 561-745-9489
cbernst@earthlink.net

ERZURUM, Victor Z
(Akron General Medical Center
744 Jamestown Court
Hudson, OH 44236
513-2421922
vzerzurum@yahoo.com

ESCO, Miechia
Wayne State University/Detroit Medical Center
3990 John R. Vascular Surgery
Detroit, MI 48201
313-745-8637
mesco@dmc.org

ESCOBAR, Guillermo
1480 Fox Pointe Circle
Ann Arbor, MI 48108
734-276-0548
FAX: 734-647-9867
guescob@med.umich.edu
ESKANDARI, Mark K (Andrea)
Northwestern University, Feinberg School of Medicine
676 N. St. Clair, #650
Chicago, IL 60611
312-926-7775
FAX: 312-695-4955
meskanda@nmh.org

* ESTES, James W (Barbara)
28 Falls Court
Highlands, NC 28741

* EUSTERMANN, James N (Kitty)
1930 Short Drive
Hanford, CA 93230
559-585-2100
FAX: 559-585-2150
jneustermann@pol.net

* EXON, C. Stuart
916 Boonville Rd
Jefferson City, MO 65109
573-635-5039

EZE, Augustine R (Theresa)
3748 Stoney Creek Court
Gaston, NC 28056
704-375-0404
FAX: 704-375-0705
ezea@bellsouth.net

* EZZET, Faik
1526 No. Edgemont
Los Angeles, CA 90027

FAIRMAN, Ronald M (Julie)
Hosp of the Univ of PA
3400 Spruce St, 4 Silverstein
Philadelphia, PA 19104
215-614-0243
FAX: 215-662-4871
ron.fairman@uphs.upenn.edu

FAKBER, Mark A (Lynne)
UNC-CH
3022 Burnett-Womack Bldg
Chapel Hill, NC 27599-7212
919-966-3391
FAX: 919-966-2898
farberm@med.unc.edu

* FARBER, Stuart P (Lynda)
3990 Sheridan St, #210
Hollywood, FL 33021-3656
954-962-9311
FAX: 954-962-5826
blade444@ix.netcom.com

FARIES, Peter L (Lisa)
Mount Sinai School of Medicine
5 E. 98th St, Box 1273
New York, NY 10029
212-241-5386
FAX: 212-534-4079
Peter.Faries@mssm.edu

#†FARLEY, Steve M (Devon)
UCLA
1440 Veteran Avenue, Apt 572
Los Angeles, CA 90024
310-478-5619
starley@mednet.ucla.edu

* FARMER, Charles E, Jr
117 Gettysburg Way
Hattiesburg, MS 39402-7780

FARR, Joseph G (Rebecca)
8650 Sudley Rd, #206
Manassas, VA 20110
703-368-9234
FAX: 703-368-0505
farr5@comcast.net

FARUQI, Rishad M (Tatjana)
Kaiser Santa Clara Medical Center
710 Lawrence Expressway, Suite 290
Santa Clara, CA 95051
408-851-2315
FAX: 408-851-2406
rishadfaruqi@hotmail.com

FEINBERG, Gary L (Pamela Kolb)
GFM Surgical Associates
718 Shore Rd
Somers Point, NJ 08244
609-927-8550
FAX: 609-926-0273
gleinberg@earthlink.net

* Senior † New Members # Candidate § Inactive
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

FIASCHETTI, Frank L (Claudia)
PO Box 3069
100 Hospital Dr, Ste 109
Ketchum, ID 83340
208-726-1765
FAX: 208-726-2863
flf1@cox.net

FISHER, Frederick S (Mary)
Regional Surgical Associates
502 Centennial Blvd, #7
Voorhees, NJ 08043
856-596-7440
FAX: 856-751-3320
fredoc1@comcast.net

FISHER, Jay B (Fran)
Progressive Physician Assoc, Inc.
3735 Nazareth Rd, #206
Easton, PA 18042
610-252-8281
FAX: 610-252-8614
jfisher@ppamail.com

FITZGIBBONS, Terrence J (Mary)
1245 Wilshire Blvd, #905
Los Angeles, CA 90017
213-977-1211
tjfitzmd@yahoo.com

FLANIGAN, D. Preston (Beth)
1140 W. La Veta Ave, #850
Orange, CA 92868
714-997-2119
knife@cox.net

FLEIN, William R (Susan)
University of Maryland Medical Systems
22 So. Greene St, #N4W66
Baltimore, MD 21201
410-328-5840
FAX: 410-328-0717
wflimn@smail.umaryland.edu

FLORES, Lucio
Brookdale Hospital Medical Center
16-38 Ridgeway Drive
Hewlett, NY 11557
718-209-1400
drlucioflores@aol.com

FLOYD, Lisa
University of Maryland
22 South Greene St
Baltimore, MD 21201
802-310-4333
lfloyd@smail.umaryland.edu

FLOYD, Vaun T
718 Encino Pl, NE
Albuquerque, NM 87102

FODERA, Maria Elena
New York Surgical Associates, P.C.
2235 Clove Rd
Staten Island, NY 10305
718-815-8100
FAX: 718-815-8200
mfodera@yahoo.com

FOGARTY, Thomas J (Rosalee)
3270 Alpine Rd
Portola Valley, CA 94028
650-854-1822
FAX: 650-854-2778
tjf@fogartybusiness.com

FOGLE, Martin A (Kathleen)
Center for Vascular Diseases
901 South Main St
Fall River, MA 02724
508-673-4329
FAX: 508-679-6669
martinfogle@cox.net
#†FOLEY, Paul
Hospital of the University of Pennsylvania
Dept of Surgery, 4th Floor
Maloney Bldg, 3
Philadelphia, PA 19104
United States
215 738-0417
foleyp@uphs.upenn.edu

* FORAN, Robert F (Carol)
705 North Elm Drive
Beverly Hills, CA 90210

FORBES, Thomas L (Elizabeth)
London Health Sciences Centre Vascular Surgery
800 Commissioners Rd E
London, Ontario N6A 5W9
Canada
519-667-6794
FAX: 519-667-6549
tom.forbes@lhsc.on.ca

FOX, Charles J
2422 Sapling Ridge Ln
Brookeville, MD 20833
301-774-2085
FAX: 202-782-3198
charles.fox@na.amedd.army.mil

FOX, Robert L (Amy)
9210 Corporate Blvd, #100
Rockville, MD 20850-4608
301-774-2434
foxden103@comcast.net

FRANKINI, Larry A
Vascular Associates of Long Island
2001 Marcus Ave, Ste S50
Lake Success, NY 11042
516-328-9800
FAX: 516-328-9801
laf3596@optonline.net

††FREIBURG, Carter B (Anja)
Yale University
333 Cedar St FMB 137
New Haven, CT 06510
203-623-3798
cfreibu@yahoo.com

FREISCHLAG, Julie Ann (Philip J Roethle)
Johns Hopkins Univ School of Med
720 Rutland Ave, Ross 759
Baltimore, MD 21205
443-287-3497
FAX: 443-287-3500
jfreisc1@jhmi.edu

FRIEDELL, Mark L (Donna)
Orlando Regional Healthcare
86 West Underwood St, Ste 201
Orlando, FL 32806
321-841-3200
FAX: 407-648-3686
Mark.Friedell@orlandohealth.com

#† FUGATE, Mark W
Johns Hopkins Hospital Division of Vascular Surgery, Harvey 611
800 N. Wolfe St, Harvey 611
Baltimore, MD 21287
410-502-6784
mfugate2@jhmi.edu

FUJITANI, Roy M (Lynette)
University of California Irvine Medical Center
22 Ascension
Irvine, CA 92612-3272
714-456-5453
FAX: 714-456-6070
rmfujita@uci.edu

FUREY, Patricia C (Douglas Goumas)
Surgical Care Group
87 McGregor St, #3100
Manchester, NH 03102
603-627-1887
FAX: 603-627-1890
drplurey@msn.com

GABLE, Dennis R (Elizabeth)
Texas Vascular Associates, P.A.
621 North Hall St, Ste 100
Dallas, TX 75226
214-821-9600
FAX: 214-823-5290
den1beth@aol.com

* Senior † New Members # Candidate § Inactive
GAFFUD, Michael J
UAB Vasc Surgery and Endovascular Therapy, BDB 503
1807 7th Ave, South
Birmingham, AL 35233
205-934-2003
michaelgaffud@gmail.com

GAHTAN, Vivian (Glenn Pickard)
SUNY Upstate Medical University
750 East Adams St, Suite 8801
Syracuse, NY 13278
315-464-6241
FAX: 315-464-6238
gahtanv@upstate.edu

GALLAGHER, Katherine
(Edward Szerlip)
Weill Cornell
435 E. 70th St, Apt 201D
New York, NY 10021
212-746-2727
FAX: 212-643-6281
katg9054@nyp.org

GALLER, Leonard (Judith)
718 Shore Rd
Somers Point, NJ 08244
609-927-8150
FAX: 609-926-7873
laptop@aol.com

GANNON, Paul G (Rozalija)
508 Westwood Drive South
Minneapolis, MN 55416
612-427-8547
FAX: 763-576-5394

GARCIA-TOCA, Manuel
Brown University, Rhode Island Hospital
2 Dudley St, Suite 470
Providence, RI 02905
401-228-0600
manuelg@stjohns.edu

GARGIULO, Nicholas J, III
University of Rochester
601 Elmwood Ave
Box 652
Rochester, NY 14642
585-273-5580
FAX: 585-756-7752
nicholas_gargiulo@urmc.rochester.edu

GASPAR, Max R (Lia)
1780 St John Rd, #48-C
Seal Beach, CA 90740
562-799-0018
mgaspar@usc.edu

GASPARD, Donald J
100 W. California Blvd
Pasadena, CA 91105
626-397-5956
FAX: 626-397-2009
melissa@irs.dutchess.net

GEARY, Joseph E (Catherine)
95 Council Rock Avenue
Rochester, NY 14610
716-234-4142
jgeary@rgihnet.edu

GELABERT, Hugh A
UCLA, Div of Vascular Surgery
200 UCLA Medical Plaza, #510-6
Los Angeles, CA 90095-6908
310-825-3684
FAX: 310-267-0189
hgelbert@mednet.ucla.edu

GELFAND, Michael L (Diana)
OPMC NYS Dept of Health
82 Oakmont St
Niskayuna, NY 12309
518-370-0648
mgelfand@nycap.rr.com

GENNARO, Mark (Alison)
Huntington Hospital/North Shore University
4920 16th Avenue, NW, Apt 226
Rochester, MN 55901
612-319-0414
garg.nitin@mayo.edu
* GENSLER, Stanley W (Rosemary)
The Surgical Group, P.C.
157 Broadway
Amityville, NY 11701
516-798-6633
FAX: 516-789-8066

GEORGITIS, James W (Debra)
Southern Maine Medical Center
3 Medical Drive
Biddeford, ME 04005
207-282-4507
FAX: 207-282-9213
jwgeorgitis@maine.rr.com

#†GHANAMI, Racheed J (Stacy)
Wake Forest University Baptist Medical Center
1623 Hawkcress Lane
Winston-Salem, NC 27127
336-716-9758
racheedghanami@gmail.com

* GIBBS, Benjamin F, Jr (Jean)
3309 Ranch Rd
Walla Walla, WA 99362
509-525-9295
bengibbsmd@aol.com

* GIBSON, L. Dean (Susan)
27090 Sugar Bush Way
Valley Center, CA 92082-7700
702-623-4141
FAX: 702-623-0845

GIGLIA, Joseph S
(Kathleen Collins)
University of Cincinnati
2312 Albert Sabin Way, #2597,
Surgery
Cincinnati, OH 45267-0558
513-558-5367
FAX: 513-558-2967
joseph.giglia@uc.edu

† GILANI, Ramyar
Baylor College of Medicine
1709 Dryden St, Ste 1500
Houston, TX 77030
713-873-1801
FAX: 713-795-5622
rgilani@bcm.edu

* GILBERTSON, Francis E (Susan)
18 Buttonwood Lane
Rumson, NJ 07760-1008
908-741-7665
FAX: 908-741-0435

* GILLESPIE, James T (Jessie)
4605 167th Court NE
Redmond, WA 98052-5401

GINGERY, Robert O (Carol)
13851 E. 14th St, Ste 202
San Leandro, CA 94578
510-347-4700
FAX: 510-347-4712
robin@vasculargroup.com

* Ginsberg, Robert L (Beverly)
620 Sand Hill Rd Apt 403D
Palo Alto, CA 94304-2602
415-967-7002

* GLASSER, Bernard D (Susan)
832 Malcolm Avenue
Los Angeles, CA 90024
310-963-5248
FAX: 310-475-3103
bsglasser@adelphia.net

GLAZER, Sidney M
(Janice Lysiak)
Kaiser Permanente
4444 20th St West
Lancaster, CA 93534
714-639-4526
FAX: 714-639-4194
sidjan@socal.rr.com

GLOVICZKI, Peter (Marta)
Mayo Clinic
200 First St, SW
Rochester, MN 55905
507-284-3407
FAX: 507-266-7156
glowiczki.peter@mayo.edu

GOLDEN, Michael A
(Susan Golden Jacobson)
Penn Presbyterian Medical Center
Wright- Saunders, #266
51 N. 39th St
Philadelphia, PA 19104
215-662-3660
FAX: 215-243-4649
michael.golden@uphs.upenn.edu
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

GOLDMAN, Mitchell H (Margy)
University of TN Graduate School of Medicine, Surgery
1924 Alcoa Highway, Box U-11
Knoxville, TN 37920
865-544-9244
FAX: 865-544-6958
mgoldman@mc.utk.edu

GOLDEN, Mitchell H (Margy)
University of TN Graduate School of Medicine, Surgery
1924 Alcoa Highway, Box U-11
Knoxville, TN 37920
865-544-9244
FAX: 865-544-6958
mgoldman@mc.utk.edu

GOPAL, Kapil
University of Maryland Medical Center
22 S. Greene St, UMMC S10B00
Baltimore, MD 21029
443-552-2900
kgopal@smail.umaryland.edu

GORIN, Daniel R (Lisa)
Cape Cod Hospital Surgery
100 Camp St
Hyannis, MA 02601
508-775-1984
FAX: 508-790-1897
livegorin@comcast.net

GOSIN, Jeffrey S
Jersey Shore Surgical Group, P.C.
442 Bethel Rd
Somers Point, NJ 08244
609-927-3030
FAX: 609-926-3563
jsgosin@comcast.net

GRIFFIN, Louie H, Jr (Ginny)
VA Medical Center: Augusta
1 Bransford Pl
Augusta, GA 30904
706-721-4761
FAX: 706-721-1940
louiegriffin@aol.com

GRAY, John L (Charmaine)
Geisinger Health System Surgery
M.C. 21-50 100 N. Academy Ave
Vascular and Endovascular Surgery
Danville, PA 17822
570-271-6369
FAX: 570-271-5840
jgray1@geisinger.edu

GREAVE, Allen H (Valerie)
315 Martin Luther King Jr. Way
PO #5299
Tacoma, WA 98415-0299
402-393-6624
FAX: 402-393-6635
allengraeve@multicare.org

GRAHAM, Alan M (Mickey)
Robert Wood Johnson Medical School
1 R Wood Johnson Place, Rm. 514
New Brunswick, NJ 08901
732-235-8770
FAX: 732-235-8538
grahamal@umdnj.edu

GRANKE, Kenneth (Deborah)
7080 Coloby Dr
West Bloomfield, MI 48323-1120
FAX: 313-576-1002
kgranke@yahoo.com

GRIGORIAN, Vrej (Setta)
1202 Calle Pecos
Thousand Oaks, CA 91360-2349
805-498-2766
vrej.grigorian@verizon.net

GUEST, Richard A (Madeleine)
5908 Waukesha Pl
Rancho Palos Verdes, CA 90275-2122
310-517-3421
FAX: 310-517-4075
richard.a.guest@kp.org
#GUEN, London
Louisiana State University
New Orleans
4500 10th St, Suite C
Marrero, LA 70072
504-430-7882
londonguery@yahoo.com

#GUZMAN, Edgar D (Ana Vera)
Cleveland Clinic Foundation
1309 West 9th St, Apt 630
Cleveland, OH 44114
773-314-6848
edgar.guzman@bcglobal.net

HADDAD, Georges K (Hilda)
Henry Ford Hospital
70 Stillmeadow Ln
Grosse Pointe Shores, MI 48236
313-916-3156
FAX: 313-916-9332
ghaddad1@hfhs.org

HAGELBERG, Richard S
100 Michigan St, NE Suite A-721
Grand Rapids, MI 49503
606-391-3139
FAX: 616-977-0396
rshagelberg@gmail.com

#HALL, Heather A
University of Chicago
1720 S. Michigan Ave, #2304
Chicago, IL 60616
773-702-0863
halli75@yahoo.com

HALLOW, Kevin D (Melinda)
Carson Surgical Group
1375 Vista Ln, #101
Carson City, NV 89703-4645
775-671-3627
DocHalow@sbcglobal.net

†HALPERN, Vivienne J
Carl T. Hayden Phoenix VA
Medical Center
650 E. Indian School Rd, MS 112
Phoenix, AZ 85012
602-277-5551
vivienne.halpern@va.gov

HALSTUK, Kevin S (Pam)
East Tower, #563
800 Austin
Evanston, IL 60202-3476
847-869-0522
FAX: 847-869-0652

HAMDAN, Allen D (Alexis)
110 Francis St, #5B
Boston, MA 02215
617-332-0939
FAX: 617-632-7977
ahamdani@caregroup.harvard.edu

HAMILTON, Ian N, Jr (Stacey)
Comprehensive Vascular Care, LLC
1109 Burleyson Rd, Suite 202
Dalton, GA 30720
706-270-3336
FAX: 706-370-7715
hhamilton@aol.com

HAN, David C (Elizabeth)
Penn State Hershey Med Center
500 University Dr, MC H053
Hershey, PA 17033
717-531-8866
FAX: 717-531-4151
dhan@psu.edu

HANNUN, Ghaleb A (Fariba)
750 Mount Carmel Mall, #200
Columbus, OH 43222-1553
614-228-0768
FAX: 614-228-7381
ghannun@midohiosurgical.com

#HARBUZARIU, Catalin (Adriana)
Mayo Clinic
200 1st St
Rochester, MN 55905
507-226-1663
harbuza@gmail.com

*HARDESTY, William (Gail)
William H Hardesty PA
416 Bellevue Ave
Trenton, NJ 08618
609-392-2737
evengreem@aol.com

HARDING, Alfred D, Jr (Katherine)
1824 King St, #200
Jacksonville, FL 32204-4730
904-384-3343

* Senior † New Members # Candidate § Inactive
HARRINGTON, Elizabeth B
(Martin)
Vascular Surgical Assoc, PLLC
1225 Park Avenue, Ste 1D
New York, NY 10128
212-876-7400
FAX: 212-831-8090
elzharr@aol.com

HARRINGTON, Martin E
(Elizabeth)
Vascular Surgical Assoc, PLLC
1225 Park Avenue, Ste 1D
New York, NY 10128
212-876-7400
FAX: 212-831-8090
maxharrington08@aol.com

* HARRIS, Clifton G, III
(Charmaine)
527 No. Shirk
Visalia, CA 93291
559-651-2763

* HARRIS, Edmund J, Sr (Marilyn)
555 Laurel Ave, Ste #605
San Mateo, CA 94401-4153
650-348-1414
FAX: 650-348-1414

HARRIS, Linda M (Norm Moser)
Millard Fillmore Hospital
3 Gates Circle, Dept of Surgery
Buffalo, NY 14209
716-887-4220
FAX: 716-887-4220
lmharris@acsu.buffalo.edu

* HARRIS, Richard C (Kathy)
1170 Gulf Blvd, #706
Clearwater, FL 33767-2783

* HARRIS, Robert W (Bonnie)
29141 Gimpl Hill Rd
Eugene, OR 97402
541-338-9003
farmrrob@pachell.net

* HARTRANFT, Thomas H (Janet)
Mid-Ohio Surgical Assoc, Inc.
750 Mt. Carmel Mall, #200
Columbus, OH 43222-1553
614-228-0768
FAX: 614-228-7381
thurtranft@mchs.com

HARTSELL, Patrick A (Krista)
Peripheral Vascular Associates
4330 Medical, Suite 120
San Antonio, TX 78229
210-614-7414
FAX: 210-616-0509
ahartsell@pvasaix.com

HASANADKA, Ravishankar
Southern Illinois University/Memorial Medical Cen
701 N. First St, Suite D346, PO Box 1963
Springfield, IL 62794
217-638-6676
rhasanadka@siu.edu

* HAUGEN, David L (Marilyn)
General Surgical Associates
Two Medical Plaza, #275
Roseville, CA 95661
916-781-2500
FAX: 916-782-9424

HAYES, Daniel, Jr
Pennsylvania Hospital
700 Spruce St Suite 101
Philadelphia, PA 19106
610-772-7760
dhayes122@yahoo.com

HELLER, Jennifer A (Joel)
Johns Hopkins Hospital
4940 Eastern Ave
Baltimore, MD 21224
410-550-4335
FAX: 410-550-1274
jheller6@jhmi.edu

* HERINGMAN, E. Craig (Selma)
3855 30th St, N.
Arlington, VA 22207
212-644-0133
FAX: 212-371-3138
herringman@aol.com

HERNANDEZ, Diego A
(Tammy L. Hernandez)
St Joseph Mercy Oakland
44555 Woodward Avenue, Ste 501
Pontiac, MI 48341
248-633-6653
FAX: 248-858-3889
dvascular@gmail.com

* Senior † New Members # Candidate § Inactive
HERSHBERGER, Richard C
Loyola University
1130 S. Oak Park Ave, #2
Oak Park, IL 60304
708-327-3431
FAX: 708-327-3492
rihershberger@lumc.edu

* HERZBERG, Robert M (Joan)
27 Chatham
Manhattan Beach, CA 90266-7225
310-545-4030
FAX: 213-857-2582
rmherzberg@adelphia.net

* HILL, Carl W (Loretta)
28620 Montereina Drive
Rancho Palos Verdes, CA 90275
310-831-4349
FAX: 310-831-4349
lorcarl@aol.com

* HILL, M. Robert, Jr (Barbara)
31255 East Nine
Laguna Niguel, CA 92677
714-248-7278

HILL, Stephen L (Susan)
Medmac Inc., Div Physicians Care
1125 S. Jefferson St
Roanoke, VA 24016
540-982-1141
FAX: 540-982-5802
shill@pcvmed.com

HINGORANI, Anil P (Renu)
Maimonides Medical Center,
Vascular Surgery
Brooklyn, NY 11219
718-283-7957
FAX: 718-635-7050
ahingorani@maimonidesmed.org

HIRKO, Mark K (Pamela)
Baystate Medical Center
759 Chestnut St, 54613
Springfield, MA 01199
413-794-3015
FAX: 413-794-1845
mark.hirkomd@baystatehealth.org

* HIRSCH, Stanley (Leslie)
UPP Vascular Surgery
5200 Centre Ave, Suite 307
Pittsburgh, PA 15232
412-623-8440
FAX: 412-623-8440
hirschsa@upmc.edu

HOBALLAH, Jamal J (Leila)
American University of Beirut
University of Iowa, Iowa City IA
Beirut, 52241
Lebanon
319-356-3305
FAX: 319-384-6306
jh34@aub.edu.lb

HOCH, John R (Valerie)
Univ Hospitals & Clinics
600 Highland Ave, Rm G5/321
Madison, WI 53792-3236
608-263-1388
FAX: 608-265-1148
hoch@surgery.wisc.edu

HOCHSTETLER, Marion, Jr
82 Hummingbird Ct
Wheelersburg, OH 45694-8344
864-455-1320
FAX: 864-455-1320
mhochstetler@ghs.org

#† HODGKISS-HARLOW, Kelley D
University of South Florida
502 South Forest Ave, #237
Tampa, FL 33606
760-716-2962
khodgkis@gmail.com

HODGSON, Kim J
SIU School of Medicine
PO Box 19368
Springfield, IL 62794-9638
217-545-8856
FAX: 217-545-2563
khodgson@siu.edu

* HODOSH, Stuart
PO Box 2781
Malibu, CA 90265-7781
310-456-1547
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOFFMAN, Warren F (Carole)</td>
<td>Warren F. Hoffman MD, Inc.</td>
<td>23451 Madison St, #340 Torrance, CA 90505-4737</td>
<td>213-530-3101</td>
<td>whoffman@ucla.edu</td>
</tr>
<tr>
<td>HOGAN, Michael B (Sonya)</td>
<td>Keesler Medical Center Biloxi, MS</td>
<td>979 E. 3rd St, #401 Chattanooga, TN 37403</td>
<td>423-488-8750</td>
<td>DrNamath@gmail.com</td>
</tr>
<tr>
<td>HOLBROOK, William A</td>
<td>Prince Georges Hospital Center</td>
<td>3001 Hospital Drive Cheverly, MD 20785</td>
<td>301-618-2336</td>
<td></td>
</tr>
<tr>
<td>HOLDEN, Charles R (Melissa)</td>
<td>Mld Ohio Surgical Associates</td>
<td>750 Mt. Carmel Mall, Ste 200 Columbus, OH 43222</td>
<td>614-228-0768</td>
<td>cholden@midohiosurgical.com</td>
</tr>
<tr>
<td>HOLLIER, Larry H (Diana)</td>
<td>LSU School of Medicine</td>
<td>433 Bolivar St New Orleans, LA 70112</td>
<td>504-568-4800</td>
<td>lhollie@lsuhsc.edu</td>
</tr>
<tr>
<td>HUGHES, Keith D (Karen)</td>
<td></td>
<td>17856 So. Robinview Court West Linn, OR 97068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUGHES, Raymond J</td>
<td>The Cardiovascular Care Group</td>
<td>433 Central Avenue Westfield, NJ 07090</td>
<td>973-759-9000</td>
<td>rholmesmd@hotmail.com</td>
</tr>
<tr>
<td>HUGHES, Scott (Esther)</td>
<td></td>
<td>637 Driver Rd Trinidad, CA 95570-9722</td>
<td>707-822-2977</td>
<td>escot@humboldt1.com</td>
</tr>
<tr>
<td>HORN, Jeffrey S (Brooke)</td>
<td>University of Alabama Birmingham</td>
<td>520 Thorn Berry Lane Birmingham, AL 35242</td>
<td>205-934-2006</td>
<td>hornjs73@gmail.com</td>
</tr>
<tr>
<td>HOWELL, Jimmy F (Robert)</td>
<td>Baylor College of Medicine</td>
<td>6560 Fannin St, #1824 Houston, TX 77030</td>
<td>713-797-1724</td>
<td>jhowell@bcm.edu</td>
</tr>
<tr>
<td>HSU, Richard C (Faith Hsu)</td>
<td>Danbury Hospital</td>
<td>111 Osborne St Danbury, CT 06810</td>
<td>203-668-0885</td>
<td>husruc41@hotmail.com</td>
</tr>
<tr>
<td>HUEBNER, Robert S (Lisa Salvador, MD)</td>
<td>Kansas Surgical Associates, LLC</td>
<td>1011 Mt Carmel Place Pittsburgh, KS 66762</td>
<td>620-231-6160</td>
<td>robertsh3@hotmail.com</td>
</tr>
<tr>
<td>HUGHES, Kakra</td>
<td>Howard University College of Medicine</td>
<td>12801 Vicar Woods Lane Bowie, MD 20060</td>
<td>202-865-1281</td>
<td>k_hughes@howard.edu</td>
</tr>
<tr>
<td>HUGHES, William F (Chris)</td>
<td>Columbia Surgical Associates</td>
<td>3220 Bluff Creek Dr, #110 Columbia, MO 65201</td>
<td>573-443-8773</td>
<td>forepablo@aol.com</td>
</tr>
</tbody>
</table>
HUNTER, Glenn C (Susan)
Saguaro Surgical, P.C.
3601 S. 6th Ave
Tucson, AZ 85723
520-300-1246
FAX: 520-318-3061
ghuntermd@yahoo.com

* HUSBAND, George G (Betsy)
2151 Norton Rd
McKinelleyville, CA 95519
707-839-3177
FAX: 206-339-7239
gghusband@gmail.com

HUSSAIN, Syed
SIU School of Medicine
2310 W. Paddington CT
Peoria, IL 61615
217-698-4184
FAX: 217-545-2563
msyhussain@yahoo.com

HUTCHINSON, Steven A (Melinda)
551 N. Hillside, Ste 550
Wichita, KS 67214
316-682-2911
FAX: 316-682-0826

* HUTCHISON, David E (Sady)
25810 N. Bolero Bnd
Rio Verde, AZ 85263-7212
303-321-2898
FAX: 303-321-2898
dehutchi@aol.com

* HUTTON, John E, Jr (Barbara)
1707 Priscilla Drive
Silver Spring, MD 20904
301-295-3155
FAX: 301-295-3627
jhutton@usus.mil

HYE, Robert J
So. Calif Permanente Medical Grp
4647 Zion Ave, Dept of Surgery
San Diego, CA 92120
619-528-3880
FAX: 619-528-3777
robert.j.hye@kp.org

IAFRATI, Mark D (Jane Freedman)
Tufts Medical Center
800 Washington St, Box 259
Boston, MA 02111
617-636-5019
FAX: 617-636-5936
mafrati@tuftsmmedicalcenter.org

* IBRAHIM, Ibrahim M
Englewood Surgical Assocs
350 Engle St, 2 East
Englewood, NJ 07631
201-227-5533
FAX: 201-227-5537
ibrahim@optonline.net

IERARDI, Ralph P (Jane)
Christina Hospital
4765 Ogletown-Stanton Rd, Ste 1E20
Newark, DE 19713
302-733-5700
FAX: 302-733-5775
rierardi@christianacare.org

IGLESIAS, Jose V (Sara)
Diagnostic Breast Center
17203 Red Oak, #202
Houston, TX 77090
281-444-9400
FAX: 281-444-1254

IHNAT, Daniel M (Kimberly)
University of Utah
30 N. 1900 East, Rm. 3C44
Division of Vascular Surgery
Salt Lake City, UT 84132
801-588-7319
FAX: 801-581-3433
daniel.ihnat@hsc.utah.edu

* IMPARATO, Anthony M (Agatha)
4717 Dolphin Cay Lane S., Apt 602
St. Petersburg, FL 33711
212-263-7311
FAX: 212-763-7722
Amimparatomdprnj@aol.com

* Senior † New Members # Candidate § Inactive
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

IMPEDUGLIA, Theresa M
Englewood Hospital & Medical Center
350 Engle St
Englewood, NJ 07631
201-894-3141
FAX: 201-541-2965
theresa.impeduglia@ehmc.com

IMPPELLIZZERI, Paul
The Reading Hospital and Medical Center
4 Sadowski Dr
Reading, PA 19606
201-894-3141
impellip1@gmail.com

* INAHARA, Toshio (Chiz)
1115 SW Summit View Dr
Portland, OR 97223-6197
503-297-6817
FAX: 503-297-6817
cytivasc@attbi.com

INDES, Jeffrey E
Yale University School of Medicine
333 Cedar St, BB-204
New Haven, CT 06510
203-785-6216
FAX: 203-785-7556
jeffrey.indes@yale.edu

IRWIN, Chance L. (Amy Irwin)
Amarillo Surgical Group
6 Medical Dr.
Amarillo, TX 79106
806-212-6604
FAX: 806-212-0355
chance.irwin@bsahs.org

JABOUR, Adel F
18350 Roscoe Blvd, #200
Northridge, CA 91325-4109
818-885-7905
FAX: 818-885-1631

* JACKSON, David R (Patricia)
152 Maplewood Terrace
Florence, MA 01060
413-584-6733
FAX: 413-584-0899
randall@massmed.org

JACOBOWITZ, Glenn R (Marilyn)
NY University Medical Center
530 First Ave, #6F
New York, NY 10016
212-263-7311
FAX: 212-263-7722
jacobg01@popmail.med.nyu.edu

* JACOBSON, Julius H, II (Joan)
Mt. Sinai
1125 Fifth Avenue
New York, NY 10128
212-860-1007
FAX: 212-248-3501
jhjdoc@pipeline.com

JAIN, Krishna M (Poonam)
Advanced Vascular Surgery
1815 Henson Avenue
Kalamazoo, MI 49048-1510
269-4926500
FAX: 269-4926461
dockrishna@aol.com

* JARRETT, Fredric (Esther)
UPMC-Shadyside
5200 Centre Ave, #705
Pittsburgh, PA 15232
412-681-8720
FAX: 412-681-8713
jarettf@upmc.edu

* JAY, Jack B (Marie)
8471 Clubhouse Blvd
Desert Hot Springs, CA 92240-1104

JAZAERI, Omid
Harbor UCLA Medical Center
1000 West Carson St, Department of Vascular Surgery
Torrance, CA 90502
310-222-2704
jazaeri@mac.com

JEWELL, Edward R (Jean)
Lahey Clinic Medical Center
41 Mall Rd
Burlington, MA 01805
781-748-8577
FAX: 781-744-5744
edward.r.jewell@lahey.org
Jeyabalang, Geetha
University of Pittsburgh Medical Center
200 Lothrop St, Suite A1011
Pittsburgh, PA 15213
412-401-1341
jeyabalan@upmc.edu

Jim, Jeffrey
Washington University-Barnes Jewish Hospital
660 South Euclid Avenue, Queeny Tower 51
St. Louis, MO 63110
310-903-7963
jimj@wudosis.wusl.edu

Jimenez, Juan C
UCLA
200 Medical Plaza, Ste 510-6
Los Angeles, CA 90093-6908
310-208-6294
FAX: 310-267-0189
jjimenez@mednet.ucla.edu

Joglar, Fernando L (Claudia Latimer)
UPR School of Medicine
UPR Medical Sciences Campus A-923, Surgery Department
San Juan, 00936-5067
787-403-4349
FAX: 787-758-1119
fljoglar@aol.com

Johnson, Hubert A (Michele)
5 Powers Rd
Andover, MA 01810-6069
978-741-2101
hajohnson@partners.org

* Johnson, John M (Jeanette)
684 Highway 144 North
Lake Village, AR 71653-9512
johnjohnson@allegiance.tv

* Johnston, Paul W (Lillian)
50 Bellefontaine, #303
Pasadena, CA 91105
818-793-4136
FAX: 818-793-8279

Jones, Paul
University of Cincinnati
234 Goodman St
Cincinnati, OH 45219
513-748-2326
jonepl@ucmail.uc.edu

* Jones, S. Austin
660 W. Broadway
Glendale, CA 91203
818-246-3521

Jordan, William D, Jr (Cynthia)
University of Alabama at Birmingham
1808 – 7th Avenue South
BDB 503
Birmingham, AL 35294
205-934-2006
FAX: 205-934-0024
wdjordan@uab.edu

Josephs, Leon G (Judith)
Fallon Clinic
20 Worcester Center Blvd, #210
Worcester, MA 01608
508-368-3190
FAX: 508-368-3193
leon.josephs@fallon-clinic.com

Kabbani, Loay S
1500 E. Medical Center Drive
Ann Arbor, MI 48105
734-327-7122
loay@med.umich.edu

Kadakol, Ajith
Henry Ford Hospital
2799 W. Gr Boulevard
Detroit, MI 48221
857-413-6177
FAX: 617-638-8409
akadakol@hfhs.org

Kafie, Fernando E (Sharon)
5149 North 9th Ave, G21
Pensacola, FL 32504
850-429-0102
FAX: 850-429-0803
fekafie@gmail.com
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

KAHN, Mark B (Lauren)
Chestnut Hill Hospital
8200 Flourtown Ave, Ste #2
Wyndmoor, PA 19038
215-836-5120
FAX: 215-456-6204
mbkahn@comcast.net

KAHN, Mark E
375 Engle St
Englewood, NJ 07631
201-894-0400
FAX: 201-894-1022

KALEKA, Gurjeet
CASE Western University Hospital, cleveland
1100 Euclid Ave, Department of Surgery, Division
Cleveland, OH 44106
216-844-1192
gurjeetkaleka@hotmail.com

KALRA, Manju (Sanjay)
Mayo Clinic
200 First St, SW
Rochester, MN 55905
507-284-4494
FAX: 507-266-7156
kalra.manju@mayo.edu

KANG, Wade W
20201 Fairmount Blvd, #201
Shaker Heights, OH 44120
440-866-0247
kangw@ccf.org

KAPPELMAN, Mark D (Susan)
120 Meadowcrest St, #150
Gretna, LA 70056-5250
504-391-7660
FAX: 504-393-2407

KASHYAP, Vikram S (Sangeeta)
Cleveland Clinic Foundation
11000 Euclid Ave, LKS 7060
Cleveland, OH 44106
216-844-1631
FAX: 216-844-7716
vikram.kashyap@uhhospitals.org

KASIRAJAN, Karthikeshwar (Stephanie)
Emory Univ Hosp, Vascular Surgery
1364 Clifton Rd NE, Rm H122-A
Atlanta, GA 30322
404-727-8407
FAX: 404-727-3316
karthik_kasirajan@emoryhealthcare.org

KATRAS, Tony
Tripler Army Medical Center/ETSU
2nd Flr, Vascular Surgery
Honolulu, HI 96859
423-418-2655
katras@etsu.edu

KATZ, David J (Carol)
3600 South Harbor Blvd, #71
Oxnard, CA 93035
805-985-6343
dkatzmd@hotmail.com

KATZ, Mayer M (Nancy)
1539 Savannah Rd, Ste 202
Lewes, DE 19958
302-644-4954
FAX: 302-645-5481
mkatzmd@aol.com

KATZ, Sherman A (Janie)
PO Box 277
Duncan Falls, OH 43734
740-452-2022
FAX: 614-848-5718
shermank@aol.com

KATZMAN, Howard E (Shirley)
Miami Vascular Specialists
7255 SW 140 Terrace
Miami, FL 33158
305-238-8113
FAX: 305-234-7502
hkatzman4@comcast.net

* Senior † New Members # Candidate § Inactive
KAZMERS, Andris (Irene)
Petoskey Surgeons
560 W. Mitchell, Ste #140
Petoskey, MI 49770
231-487-1900
FAX: 313-993-0244
akazmers@excite.com

*KELLEY, Harley D
63994 JD Estates Dr
Bend, OR 97701
541-382-8625
FAX: 541-573-4240
hkelley@bendcable.com

*KEMPCZINSKI, Richard
3435 Golden Ave, Apt 201
Cincinnati, OH 45226
513-321-4724
FAX: 513-321-7350
kemprf@fuse.net

*KENNECY, David A
Central Medical Arts Building
433 Frye Farm Rd, #10
Greensburg, PA 15601
412-537-4751
FAX: 412-537-0259

KENNEY, David A
Central Medical Arts Building
433 Frye Farm Rd, #10
Greensburg, PA 15601
412-537-4751
FAX: 412-537-0259

KENNEY, David A
Central Medical Arts Building
433 Frye Farm Rd, #10
Greensburg, PA 15601
412-537-4751
FAX: 412-537-0259

KENT, K. Craig (Lisa)
University of WI, School of Medicine & Publ
600 Highland Ave, Suite H4/ 710D
Madison, WI 53792-7375
608-265-8854
FAX: 608-262-1842
kent@surgery.wisc.edu

KERR, Thomas M (Patricia)
2809 W. Waters Ave
Tampa, FL 33614
813-348-9088
FAX: 813-348-9310
tmkerrmd@aol.com

* KERSTEIN, Morris D (Margaret)
1701 Locust St, Unit 1914
Philadelphia, PA 19103-6343
610-527-4316
FAX: 610-520-9293
LK1122@comcast.net

KEYHANI, Arash
Harbor-UCLA
15 Goldenspur
Rancho Palos Verdes, CA 90275
281-773-0633
arash.keyhani@gmail.com

KEYHANI, Kourosh
3123 Blue Bonnet
Houston, TX 77025
281-989-4248
kourosh.keyhani@uth.tmc.edu

*KHAN, Aziz A (Deanna)
9200 Colima Rd
Whittier, CA 90605
562-945-2655
FAX: 562-696-2414
aakdyk@hotmail.com

*KHANNA, Trilok S (Nancy)
PO Box 1275
Breckenridge, CO 80424
970-547-8234
FAX: 970-453-2729
nikhanna45@yahoo.com

*KHOBREH, Michael T
2530 Oakshore Dr
Westlake Village, CA 91361
Khoberhmd@aol.com

*KHOLOUSSY, A. Mohsen
PO Box 1184
Fortville, PA 17901
570-622-5885

KHOURY, Thomas L (Cheryl)
Southern Ohio Surgical Associates, Inc.
1711 27th St, Braunlin Bldg,
Ste 306
Portsmouth, OH 45662
740-353-8661
FAX: 740-354-3254
khoury@sowmc.org

* Senior † New Members # Candidate § Inactive
KIM, Billy J (Jane)
NYU Medical Center
222 E. 34th St, Apt 626
New York, NY 10016-9826
212-663-5763
billyk@alumni.rice.edu

* KIM, Youn S
2500 Breton Woods Dr, SE,
Unit 2032
Grand Rapids, MI 49512
616-281-4457
yksmd@aol.com

KING, Terry A (Dianne)
Cleveland Clinic Florida
2950 Cleveland Clinic Boulevard
Weston, FL 33331
954-659-5232
FAX: 954-659-5233
kingt7@ccf.org

KIRKWOOD, Melissa
Hospital of the University of Pennsylvania
19000 Mckinney Ave, #1106
Dallas, TX 75201-1719
214-200-9453
melissa.kirkwood@uphs.upenn.edu

* KISTNER, Robert L (Adelaide)
Kistner Vein Clinic
848 South Beretania, Ste 307
Honolulu, HI 96813-2551
808-532-8546
FAX: 808-532-2240
hk@kistnerveinclinic.com

KLADAR, Philip A (Katie)
Kootenai Medical Center
700 Ironwood, Suite 304
Coeur d'Alene, ID 83814
208-667-1588
FAX: 208-667-3788
drkladar@hotmail.com

* KLEIMAN, M. Leonard (Danna)
118 Waters Edge Dr
Jupiter, FL 33477
516-743-6923
FAX: 516-789-8066
leonardkleiman@msn.com

* KLEIN, Lawrence
200 S. Lake Dr, PO Box 711
Lake Harmony, PA 18624
570-476-6278
klemi@ptd.net

KLEIN, Stanley R (Joan Wright)
Harbor-UCLA Medical Center
1000 W. Carson St, Box 15
Torrance, CA 90509
310-222-2795
FAX: 310-328-6079
sklein@ucla.edu

KLEMAN, Charles H (Candace)
151-41 E. Whittier Blvd, #250
Whittier, CA 90603
310-698-0271
FAX: 310-698-7467
cklieman@aol.com

* KOBOLD, Elmer E (Diana)
3741 Fairmeadow Ct
Billings, MT 59102-7638
406-238-6470

KOENIG, Frank L
Radiologic Associates of Fredericksburg
10401 Spotsylvania Avenue
Suite 200
Fredericksburg, VA 22408
540-6549118
franklkiiiMD@gmail.com

KOHL, Roy D
10 Congress St, #504
Pasadena, CA 91105
818-792-1211
FAX: 626-358-2187
roykohl@earthlink.net

KOLAKOWSKI, Stephen, Jr (Seema)
Riverview Surgical Associates
241 Mennonite Rd
West Long Branch, NJ 07764
732-403-2075
FAX: 732-403-2076
skolaowski@roop.com

KOLLUPARA, Venkata SK (Roop)
540 Parmalee Ave, #110
Youngstown, OH 44510
330-747-1106
FAX: 330-747-0491
ukollupara@aol.com
KOUGIAS, Panagiotis
Baylor College of Medicine, MED VAMC
2002 Holcombe blvd, OCL 112
Houston, TX 77030
713-798-8412
FAX: 713-798-8460
pkougias@bcm.tmc.edu

* KOU TRA S , Phoebe u s (H e l e n)
PO Box 836290
Richardson, TX 75083-6290
214-676-9892
FAX: 972-235-4982
pkoutras@flash.net

KRAEGER, Russell R (Betsy)
St. Louis Thoracic & Vasc Inc.
129 North Bemiston Ave
St. Louis, MO 63105
314-965-9660
FAX: 314-965-9670

* KRAUS, Matthew A (Helen)
5719 High St
New Port Richey, FL 34652
813-842-5888
FAX: 813-847-0489

KREIENBERG, Paul B (Suzanne)
Vascular Institute
47 New Scotland Ave, MC 157
Albany, NY 12208
518-262-8720
FAX: 518-262-6720
kreienbergp@albanyvascular.com

KREISHMAN, Peter
Walter Reed Army Medical Center
Blg 2, Ward 64
6900 Georgia Ave NW
Washington, DC 20307
301-529-0301
FAX: 202-782-3198
dr_peite177@yahoo.com

* KREMER, Richard M (Sandra)
PO Box 33330
Seattle, WA 98133
425-744-1405
rmkmd@prodigy.net

KRESOWIK, Timothy F
Univ of Iowa Health Care
200 Hawkins Dr, 1508 JCP,
Surgery
Iowa City, IA 52242
319-356-7976
FAX: 319-384-6306
timothy-kresowik@uiowa.edu

KRISHNASASTRY, Kamphampaty
Northshore University Hospital
1999 Marcus Avenue, Ste 106B,
Surgery
Lake Success, NY 11042
516-233-3701
FAX: 516-233-3733
kkrishna@nshs.edu

KRONSON, Jeffrey W (Jean)
4844 Carmel Rd
La Canada, CA 91011-2707
562-698-2201
FAX: 562-693-2122
jkronson@earthlink.net

KUBELIK, Dalibor (Natalie)
The Ottawa Hospital
1053 Carling Avenue, Ottawa
Ottawa, K1Y 4E9
613-798-3555
dkubelik@ottawahospital.on.ca

* KUBISTA, Theodore P (Alice)
216 N. 33rd Ave E
Duluth, MN 55804
218-722-8364
Kubimari@aol.com

KUHN, Brian
Good Samaritan Hospital
375 Dixmyth Ave
Cincinnati, OH 45220
513-349-4949
bkuhn100@hotmail.com

* KULAK, Robert G (Gail)
32 Randall Hgts
Middletown, NY 10940
914-692-3111
FAX: 914-692-0125
robertkgulak@yahoo.com
KULWICKI, Aaron D (Erin)
Mount Carmel
9790 Allen Drive
Columbus, OH 43017
614-353-6191
aaronkulwicki@hotmail.com

KUMAR, Sanjay
Cooper University Hospital,
UMDNJ – RWJMS
3 Cooper Plaza, Suite 411
Camden, NJ 08053
856-968-7067
kumar-sanjay@cooperhealth.edu

KURIHARA, Wallace K
HMC
800 Main Ave, South
Rugby, ND 58368-2118
701-780-6392
FAX: 701-780-6078
katsumigab@aol.com

KURLAND, Brian D (Noreen)
13842 Pine Villa Lane
Fort Myers, FL 33912
239-481-8820
FAX: 239-481-7664

* KUTNER, Fredric (Natalie)
970 S. Monroe St
Denver, CO 80209

KUTZ, John A
Delta Medix, P.C.
126 Ledgewood Drive
Clarks Summit, PA 18411
570-342-7804
FAX: 570-342-6879
kutzy@earthlink.net

#†KVINLAUG, Kylie
McGill University
#208 – 333 Sherbrooke St, E.
Montreal, no H2X+4E3
Canada
514-903-8906
kylie.kvinlaug@mail.mcgill.ca

KWASS, Walter
Merrimack Valley Hospital
62 Brown St, 405
Haverhill, MA 01830
978-912-7450
FAX: 978-912-7420
walterkwass@gmail.com

LADOWSKI, Joseph S (Anne)
Indiana/Ohio Heart Inst
7910 W. Jefferson Blvd, #102
Fort Wayne, IN 46804
260-436-2424
FAX: 260-436-2922
jsl@ioheart.com

LALKA, Stephen G (Valerie)
The Sanger Clinic
1001 Blythe Blvd, Ste 300
Charlotte, NC 28203
704-355-9430
FAX: 704-355-8192
slalka@sanger-clinic.com

LANDIS, Michael E
Sentara Medical Group
400 Sentara Circle, Suite 350
Williamsburg, VA 23188
757-470-5570
FAX: 757-961-9268
melandis@sentara.com

* LANG, Erich K
LSU Med Center, Dept Rad
1542 Tulane Ave
New Orleans, LA 70112
504-568-4446

LANGSFELD, Mark (Carol)
Vascular Div, Dept of Surgery
MSC10 5610, 1 University of
New Mexico
Albuquerque, NM 87131
505-272-5850
FAX: 505-272-4851
mlangsfeld@salud.unm.edu

LARSON, Robert A (Kathy)
Guthrie Clinic
1 Guthrie Square
Sayre, PA 18840
570-882-3087
FAX: 570-882-2338
larson_Roberi@Guthrie.org

LASALLE, Andre J (Kathy)
Rockwood Clinic
East 400 Fifth Ave
Spartak, WA 99202
509-838-2531
FAX: 509-624-9739
aklasalle@comcast.net
SCVS • 40TH ANNUAL SYMPOSIUM ON VASCULAR SURGERY

LATIF, Sheikh A (Liz Latif)
Valley Endovascular Institute of Surgery
Lacey Medical Plaza, 1524 Lacey Blvd, #201
Hanford, CA 93230
877-360-8346
FAX: 877-360-8346
calstatesurgery@aol.com

LAUTERBACH, Stephen R
Faxton 4th floor, 1670 Sunset Ave
Utica, NY 13502
315-624-8110
FAX: 315-624-8115
srldmd@hotmail.com

LAWHORNE, Thomas W, Jr (Susan)
Columbus Cardiovascular Surgery
2330 Manchester Expwy, Bldg E
Columbus, GA 31904-6806
706-596-8200
FAX: 706-322-8483
mulwood@aol.com

LAWRENCE, Peter F
UCLA, Gonda Vascular Center
200 Medical Plaza, #526, Vascular Surgery
Los Angeles, CA 90095
310-267-0189
FAX: 310-267-0189
pflawrence@mednet.ucla.edu

LEE, Eugene S (Jennifer)
UC Davis
4860 Y. St
Sacramento, CA 95817
916-734-6061
FAX: 916-734-2026
Eugenes.lee@ucdmc.ucdavis.edu

LEE, George
345 Greenoaks Drive
Atherton, CA 94027
404-512-3909
gkleemd@gmail.com

LEE, Jason T
Stanford University Medical Center
300 Pasteur Drive, Suite H3600
Stanford, CA 94305
650-724-8292
FAX: 650-498-6044
jthee@stanford.edu

LEE, Robert E (Gloria)
Port Huron Vascular Clinic
2603 Electric Ave, Ste C
Port Huron, MI 48060
810-985-1300
FAX: 810-985-1659
rlee172@comcast.net

LEE, Stephen E (JoEllen)
4951 Shoreline Way
Oxnard, CA 93035
805 985 6889
leest@att.net

LEERS, Steven A (Susanna)
University of Pittsburgh Medical Center
5200 Centre Avenue, Suite 307
Pittsburgh, PA 15232
412-623-3333
leerssa@upmc.edu

LEE, Benny Chen-Chu (Lina)
PO Box 10318
Torrance, CA 90505
559-738-7553
FAX: 559-739-0256

LEE, Chong A
6363 christie Ave, #1201
Emeryville, CA 94608
7072463874
callee1015@gmail.com

LEE, Dae (Melanie Lee)
Oregon Health and Science University
3181 SW Sam Jackson Park Rd OP11
Portland, OR 97239
503-494-7593
FAX: 503-494-4324
leed@ohsu.edu

* LEE, George

* LEIDNER, Harold J
10425 Villa Ridge Drive
Las Vegas, NV 89134-7419

* LEMAITRE, George D (Connie)
8 Sunset Rock Rd
Andover, MA 01810-4813
978-475-7462
FAX: 978-475-7462
drlemaitre@lemaitre.com

* Senior † New Members # Candidate § Inactive
LEMMON, Gary W (Kim)
1801 N. Senate Blvd, #D-3500
Indianapolis, IN 46260
317-962-0288
FAX: 317-962-0289
gwlemmon@iupui.edu

* LEON, Fernando (Dolores)
2221 SW 1st Ave, Apt 2322
Portland, OR 97201-5023
503-222-2729

LEONARD, John D (Karen)
13830 Davis Lane
Longmont, CO 80501
altaace@aol.com

LEVIN, Phillip M (Lynda)
Vascular Surgery Assoc
8631 West 3rd
Los Angeles, CA 90048
213-612-8132
FAX: 310-659-3815
vasculardocs2002@yahoo.com

* LEVIN, Sheldon M (Dolores)
750 El Camino Del Mar
San Francisco, CA 94121
415-752-0550
sheldough@msn.com

LEVISON, Jonathan A (Cathy)
The Cardiovascular Care Group
9 Franklin Ave, Ste #302
Belleville, NJ 07109
973-379-3888
FAX: 973-379-1791
jlevison@comcast.net

#†LEW, Wesley
UCLA
200 Medical Plaza, Suite 510-6
Los Angeles, CA 90095
626-679-6405
wlew@mednet.ucla.edu

LEWINSTEIN, Charles J (Stacey)
670 River Chase Ridge
Atlanta, GA 30328
404-256-0170
FAX: 404-256-2998
lewinstc@aol.com

LI, Edward N
390 S. Sepulveda Blvd, #305
Los Angeles, CA 90049-3141
corvor98@gmail.com

LIN, Judith C
Henry Ford Hospital
41480 Carmela Ct
Northville, MI 48167
313-916-3156
FAX: 313-916-3023
jlin1@hfhs.org

LIN, Peter H (Cynthia)
Baylor College of Medicine
2002 Holcombe Blvd, Surg Srv 112
Houston, TX 77030
713-798-8412
FAX: 713-794-7352
plin@bcm.tmc.edu

#†LIND, Benjamin B (Catherine)
Rush University Medical Center
2224 W. Dickens Avenue
Chicago, IL 60612
312-546-3008
bjllind@gmail.com

* LINDLEY, Jearl R (Sim)
+566 Mockingbird St
Las Cruces, NM 88011-9616

LINDSAY, Stephen F
447 Old Newport Rd, #210
Newport Beach, CA 92663
949-574-7176
FAX: 949-574-7180

LIPSITZ, Evan C (Susan)
Montefiore Medical Center
111 East 210th St
Bronx, NY 10467
718-920-2016
FAX: 718-231-9811
elipsitz@aol.com

LIRITZMAN, Mitchell D
+212 W. Congress St, Ste 3200
Lafayette, LA 70506
337-273-2863
FAX: 337-984-5428
mitchel.liritzman@hcahealthcare.com

* LIST, John W (Elizabeth)
John W. List MD, Inc.
3227 Professional Dr
Auburn, CA 95603
916-823-0701
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litzendorf, Maria E</td>
<td>Ohio State Medical Center</td>
<td>456 West 10th Ave, Cramblett 3018, Columbus, OH 43210</td>
<td>614-293-8536</td>
<td>614-293-8902</td>
<td>litzendorf@gmail.com</td>
</tr>
<tr>
<td>Lloyd, William E (Ellen)</td>
<td>Samuel S. Stratton VA Med Center</td>
<td>113 Holland Ave, Department Veteran Affairs, Albany, NY 12208</td>
<td>518-626-6597</td>
<td>william.lloyd@med.va.gov</td>
<td></td>
</tr>
<tr>
<td>Loftus, John P (Sheila)</td>
<td></td>
<td>3443 Villa Lane, #3, Napa, CA 94558</td>
<td>707-226-2031</td>
<td>jloftus.md@gmail.com</td>
<td></td>
</tr>
<tr>
<td>Logudice, Philip (Margaret)</td>
<td></td>
<td>2274 Rue Le Charlene, Rancho Palos Verdes, CA 90275</td>
<td>310-548-5159</td>
<td>ibsurg@aol.com</td>
<td></td>
</tr>
<tr>
<td>Long, David M</td>
<td>Front Range Surgical Assoc</td>
<td>8300 Alcott, #201, Westminster, CO 80030</td>
<td>303-428-0004</td>
<td>303-428-1539</td>
<td>david@frsurgical.com</td>
</tr>
<tr>
<td>Long, Graham W (Randi)</td>
<td>William Beaumont Hospital</td>
<td>3601 West 13 Mile Rd, Vascular Services, Royal Oak, MI 48073</td>
<td>248-551-1465</td>
<td>248-551-3023</td>
<td>glong@beaumont.edu</td>
</tr>
<tr>
<td>Loughridge, BP</td>
<td>St. John’s Doctors Bldg, #303</td>
<td>PO Box 521057, Tulsa, OK 74152-1057</td>
<td>918-744-7213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowney, Bruce W</td>
<td>VA Medical Center</td>
<td>200 Spring Rd, Bedford, MA 01730</td>
<td>617 244 2161</td>
<td></td>
<td>bwlowney@mac.com</td>
</tr>
<tr>
<td>Luhr, Eddy H (Karei Luhr)</td>
<td>Las Vegas Surgical Associates</td>
<td>8930 West Sunset Rd, Suite 300, Las Vegas, NV 89135</td>
<td>702-258-7788</td>
<td></td>
<td>eiluhr@yahoo.com</td>
</tr>
<tr>
<td>Luh, Matthew L (Marianne)</td>
<td>Methodist DeBakey Heart & Vascular Center</td>
<td>802 N. Riverside Rd, Suite 300, St. Joseph, MO 65407</td>
<td>816-271-6666</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lombardi, Joseph V</td>
<td>Cooper Health Systems</td>
<td>3 Cooper Plaza, #411, Camden, NJ 08103</td>
<td>856-968-7067</td>
<td>856-968-7600</td>
<td>lombardi-joseph@cooperhealth.edu</td>
</tr>
</tbody>
</table>

* Senior † New Members # Candidate § Inactive
LYDEN, Sean P (Julie)
Cleveland Clinic Foundation
9500 Euclid Ave, Vascular Surgery
Desk H32
Cleveland, OH 44195
216-444-3381
FAX: 216-444-9324
lydens@ccf.org

LYNN, Richard A
(Margrit Bessenroth-Lynn)
1411 No. Flagler Dr, #9700
West Palm Beach, FL 33401-3413
561-655-1877
FAX: 561-655-6404
rich549bux@aol.com

MACBETH, Gordon A
414 G. St, Ste 221
Marysville, CA 95901
209-465-5688
FAX: 209-465-0739
amacbeth@aol.com

MACEDONIA, Dominic A
(Debby)
523 North 4th St
Steubenville, OH 43952
614-282-1144
FAX: 714-282-2374
ohiowalleysurgical@sbcglobal.net

MALIK, Rajesh
Mt. Sinai
5 E. 98th St, 4th Floor
New York, NY 10029
646-642-4069
rajesh.malik@mssm.edu

MALIK, Riaz A (Jan)
1441 Liberty St, #303
Redding, CA 96001-0848
530-246-2420
FAX: 530-247-8202
riamalik@aol.com

MALONE, James M (Delaney)
2263 E. Riverdale St
Mesa, AZ 85213
480-657-7610
FAX: 480-657-0340
jmalone@cvurgery.net

MALONE, Michael D
Blanchard Valley Hospital
1900 S. Main St, CDS 349
Findlay, OH 45840
419-420-9175
FAX: 419-420-3674
malonebv@sbcglobal.net

MANICONE, John A
Newark Beth Israel Medical Center Surgery
203 Altaview Court
Whippany, NJ 07981
973-379-5888
FAX: 973-912-9757
manicone@bellatlantic.net

MANKOWITZ, Barry J (Rusty)
58477 Morton St
Grassy Key, FL 33050
305-289-1771
FAX: 305-743-1887
bjmgrassykey@aol.com

MANNAVA, Krishna
Fairfield Medical Center
2160 S. First Ave
Maywood, IL 60153
708-327-2686
FAX: 708-327-3492
krishnamannava@yahoo.com
* MANNING, Larry G (Connie)
PO Box 4937
Horseshoe Bay, TX 76657-4937
830-598-4925
FAX: 830-598-4425
lgmhawk@aol.com

* MANNIS, Ben G (Shirley)
2100 Century Park East
Los Angeles, CA 90067
310-536-2550

MANSOUR, M. Ashraf (Julie)
Spectrum Health Medical Group
4089 Lake Dr, SE, Ste 312
Grand Rapids, MI 49546-8816
616-459-8700
FAX: 616-459-0247
ashmans2@aol.com

MANTELL, Mark P (Michelle)
Suite 805, Pepper Pavilion
1800 Lombard St, 1 Graduate Plaza
Philadelphia, PA 19146
215-893-2996
FAX: 215-853-7354
markpmantell@hotmail.com

#†MARGNI, Mohamed N
(Noon Yousif)
Cleveland Clinic Foundation
3333 Warrensville Ct, Rd #566
Shaker Heights, OH 44122
216-292-4773
margnim@ccf.org

* MARGULES, Richard M (Wendy)
+ Merlin’s Lane
Newtown, CT 06470
203-778-5955
FAX: 203-743-6196
richardmargules@sbcglobal.net

MARIN, Michael L
Mount Sinai Medical Center
Department of Surgery
5 East 98th St, Box 1259
New York, NY 10029
212-241-5392
FAX: 212-433-0724
michael.marin@moun Sinai.org

* MARKS, Charles (Joyce)
988 Boulevard of the Arts #1517
Sarasota, FL 34236
941-366-8475
FAX: 941-575-2891

MARONE, Luke K (Karen)
Univ of Pittsburgh Med Center
107 Indian Meadow Dr
Mars, PA 16046-5103
412-802-3025
maronelk@upmc.edu

† MARROCCO, Christopher S
S&W Memorial Hospital,
Texas A&M
3269 Lake Park Rd
Belton, TX 76513
562-533-4886
vascfellow@gmail.com

MARSDEN, Brent
(Nahid Marsden)
Carolinas Medical Center
Vascular Surgery Fellowship
Office, 1000
Charlotte, NC 28203
513-410-2314
brentd321@yahoo.com

* MARTIN, Alfred J, Jr
(Thomasine Alicia)
PO Box 4697
Santa Fe, NM 87502
505-820-1544
FAX: 505-982-0382
ajmartinjr@msn.com

MARTIN, Gordon H (Shanna)
Gordon H. Martin, MD, PA
333 No. Texas Avenue, #4200
Webster, TX 77598
281-333-9720
FAX: 281-333-9884

MARTIN, John D (Lisa)
Cardiology Associates, LLC
2002 Medical Parkway, Ste #520
Annapolis, MD 21401
410-571-8430
FAX: 410-573-9413
drjdmartin@comcast.net

MARTIN, Samuel P
Vascular Center of Orlando
70 W. Gore St, Ste 202
Orlando, FL 32806
407-244-8559
FAX: 407-244-8560
drmartin@vvcenters.com

* Senior † New Members # Candidate § Inactive
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

* MARTIN, Sloan
 55 Cross Park Court
 Greenville, SC 29605

* MASLEY, Arpad L (Peggy)
 E. 15881 Hwy 106
 Belfair, WA 98528
 206-275-2451

* MASELLO, Thomas P (Carolyn)
 James H. Quillen VA Medical Center, Moun
 PO Box 4000 (Mail Code: 112)
 Mountain Home, TN 37684-4000
 423-979-2878
 FAX: 423-979-2966
tommassello@comcast.net

* MASUMOTO, Teruo (Mary)
 1026 Broadmoor Rd
 Bryn Mawr, PA 19019-1934

MATSUMURA, Jon S (Amy)
 600 Highland Ave
 Madison, WI 53792
 608-265-4420
 FAX: 312-695-4955
matsumura@surgery.wisc.edu

MATSUMURA, John H (Natalie)
 The Iowa Clinic, Heart & Vascular Care
 1307 SE University Ave
 Waukee, IA 50263
 515-875-9090
 FAX: 515-875-9077
jmatsuura@iowachicnic.com

MATTOS, Mark A
 Wayne State University
 24140 Deahnurst
 St. Clair Shores, MI 48082
 313-745-0462
 FAX: 313-745-1873
mamattos@med.wayne.edu

MAX, Theodore C (Melva)
 PO Box 401
 Holland Patent, NY 13354
 315-797-3430

* MCALEXANDER, Robert A
 1628 So. Mildred St, #104
 Tacoma, WA 98465-1628

MCCARVILLE, Donald J (Laurianne)
 1440 14th Ave, 3rd Floor
 Regina, Saskatchewan S4P 0W5
 Canada
 306-766-6900
 FAX: 306-766-6920
d.mccarville@sasktel.net

MCCART, P. Michael
 75-315 Morningstar Drive
 Indian Wells, CA 92210
 760-837-3740
 FAX: 760-837-3750
mmccart@earthlink.net

MCCARTNEY, Stephen F (Jane)
 US Naval Hospital Camp Lejuene
 100 Brewster Boulevard
 Camp Lejeune
 Jacksonville, NC 28547
 252-393-6786
 FAX: 252-393-3408
stephen.mccartney@med.navy.mil

MCCARVILLE, Donald J
 Vascular Associates of Birmingham
 817 Princeton Avenue SW, Ste #306
 Birmingham, AL 35211
 205-783-0160
 FAX: 205-788-6249
madmdpc@yahoo.com

MCCORD, R. Scott (Marian)
 Vascular Associates of Birmingham
 817 Princeton Avenue SW, Ste #306
 Birmingham, AL 35211
 205-783-0160
 FAX: 205-788-6249
madmdpc@yahoo.com

* MCCRANIE, Dolph B (Beverly)
 2230 Lynn Rd
 Thousand Oaks, CA 91360
 805-495-1066

MCDONNELL, Peter J
 8 Redtail Ct
 Coralville, IA 52241-1105
 708-923-6605
peterandvera@sblglobal.net
SCVS • 40TH ANNUAL SYMPOSIUM ON VASCULAR SURGERY

MCDougAL, Jennifer L
Carolinas Medical Center
17620 Invermere Ave
Huntersville, NC 28078
704-355-3044
Jennifermcdougal@mac.com

* MCDowell, Donald E (Amada)
West Virginia Univ Medical Center
Department of Surgery
Morgantown, WV 26506
304-293-4180
FAX: 304-293-4711
uwe06171@wvnet.edu

* MCGEE, Theodore J (Clara)
Columbus Surgical Assoc, P.C.
2119 Warm Springs Rd
Columbus, GA 31904
706-324-3243
FAX: 706-324-3835

MCGINN, Robert F
4647 Zion Ave
San Diego, CA 92120
robert.mcginn@kp.org

MCGRAW, Daniel J (DAnn Duesterhoeft)
Camden Clark Meml Hospital,
Physicians Office
705 Garfield Avenue, #460
Parkersburg, WV 26101
304-424-2093
FAX: 304-424-2101
dmcgraw@cmnh.org

MCGREGOR, William R (Juanita)
Benefis Health System
520 34th St, S
Great Falls, MT 59405-3550
406-727-4070
mcrwilr@yahoo.com

MCINTYRE, Kenneth E, Jr
2040 W. Charleston Blvd, Ste 302
Las Vegas, NV 89102
702-671-2369
FAX: 702-385-9399
kennydallasmac@yahoo.com

† MCKINSEY, James F (Terri)
Columbia University Medical School
161 Ft. Washington Ave, Ste 627
New York, NY 10032-3713
212-342-3255
FAX: 212-342-3252
jm2111@columbia.edu

* MCKITTRICK, James E (Mehle)
649 Camino Campana
Santa Barbara, CA 93111-1424
805-967-3282
FAX: 209-315-5808
jmckinsb@aol.com

MCLAFFERTY, Robert B (Erica)
SIU School of Medicine SIU
Surgical Clinic
421 N. 9th St
P O Box 19680
Springfield, IL 62794-9680
217-545-7983
FAX: 217-545-9711
rmclaflerty@siumed.edu

MCMILLAN, William D (Mary)
Minneapolis Vascular Physicians
2800 Campus Dr, Ste 20
Plymouth, MN 55441
612-863-3999
FAX: 612-863-3994
wmcmillan@mplsrad.com

* MCNAMARA, John P (Laurence)
23451 Madison St, #340
Torrance, CA 90505
310-373-6864
FAX: 310-541-8697
john.mcnamara@yahoo.com

MCNEIL, James W (Julie)
CVT Surgical Center
7777 Hennessy Blvd, #1008
Baton Rouge, LA 70808
225-766-3416
FAX: 225-766-3144
jmcneil@cvtsc.com

* MCVEIGH, Hugh (Sandi)
103 Via Ensueno
San Clemente, CA 92672-2456

* MEADE, James W (Claire)
4368 Oak View Dr
Sarasota, FL 34232
jmeade5167@hotmail.com

* Senior † New Members # Candidate § Inactive
MEERAN, M. Mohamed
(Razeeya)
IPA Med Plaza, Industrial Pk Rd
PO Box 157
St Clair, PA 17970-0157
570-429-1000
FAX: 570-429-1532

MEHTA, Kautilya A (Sulabha)
608 NW 9th St, Ste 5204
Oklahoma City, OK 73102-1006
405-232-2178
FAX: 405-232-6617
dockamehta@gmail.com

MEHTA, Manish (Beulah)
The Vascular Group, PLLC
43 New Scotland Ave, MC 157
Albany, NY 12208
518-262-5158
FAX: 518-262-6720
mehtam@albanyvascular.com

MEIER, George H (Margaret)
University of Cincinnati, Division of Vascular Surgery, ML0558
231 Albert Sabin Way
Cincinnati, OH 45267-0558
513-558-5367
george.meier@uc.edu

MEKA, Madhavi
University of Arkansas for Medical Sciences
4301 W. Markham St
Little Rock, AR 72205
501-686-6176
FAX: 912-350-5984
mmeka@uams.edu

MELIN, Matthew MA (Cynthia)
Park Nicollet Health Services
Heart and Vascular Center 6500
Excelsior
St. Louis Park, MN 55416
952-993-3180
FAX: 952-993-3653
melinn@parknicollet.com

MELL, Matthew W
Stanford University
300 Pasteur Dr, H3600
Stanford, CA 94305-5642
608-265-4420
FAX: 608-265-1148
mwmell@stanford.edu

MENDES, Donna M
(Ronald LaMotte)
1090 Amsterdam Ave, #8F
New York, NY 10025
212-636-4990
FAX: 212-636-4992
dmendes@chpnet.org

MENDOZA, Bernardo
Tucson Vascular Surgery
1815 W. St. Mary’s Rd
Tucson, AZ 85745
520-628-1400
FAX: 520-628-4863
bmendoza@azvasc.com

MENZOIAN, James O (Deborah Syah)
University of Connecticut Health Center
263 Farmington Ave, Department of Surgery
Farmington, CT 06030-3806
860-679-7650
FAX: 860-679-4948
jmenzoian@uchc.edu

MESSINER, Ryan
Penn State Hershey Heart and Vascular Institute
500 University Drive Mail Code H053
Hershey, PA 17033
717-531-8866
rmessiner@hotmail.com

MEYER, William H (Cora)
9500 Auenel Lane
Fort St. Lucie, FL 34986
561-461-2704
meyerwilliam@bellsouth.net

MICHALUK, Brian T
256 Madison Ave, 2nd floor, Vascular Surgery
Staten Island, NY 10305
718-226-6298
FAX: 718-226-1295
brianmich@gmail.com
MILLER, D. Craig
(Elsann Lyn Laws Miller)
Stanford Univ Medical School
300 Pasteur Dr, Falk CV Research
Center
Stanford, CA 94305-5407
650-725-3826
FAX: 650-725-3846
dcm@stanford.edu

MILLER, M. Todd
Regional Vascular & Vein
400 Medical Park Dr, Ste 203
Dover, OH 44622
419-291-2275
todd.millermd@promedica.org

MILLER, Normand (Lyne)
224 Main St, Suite 1D
Salem, NH 03079
603-898-3364
nmiller@veincenters.com

MILLS, Joseph L, Sr, (Margaret)
University of Arizona Health
Sciences Center
1501 N. Campbell Avenue,
Rm 4404, PO Box
Tucson, AZ 85724
520-626-6670
FAX: 520-626-4008
jmills@email.arizona.edu

* MINDLIN, Allen I
18304 Lake Encino Dr
Encino, CA 91316-4438
818-881-7866

MINKES, Mark (Sharon)
11480 Brookshire Ave, #111
Downey, CA 90241
213-923-6511
FAX: 562-806-3216
shminkes@cox.com

* MINOR, Robert B (Janice)
130 Carnie Blvd, #4
Voorhees, NJ 08043
609-596-7440
FAX: 609-751-3320

MITCHELL, Marc E (Jennifer)
University of Mississippi
Department of Surgery
2500 North State St
Jackson, MS 39216
601-984-5105
FAX: 601-815-1028
memitchell@umc.edu

MIX, John W
Macon Cardiovascular Institute
Department of Surgery
575 First St
Macon, GA 31201
478-743-9752
FAX: 478-743-9465
jwilliammix@yahoo.com

* MLYNARCZYK, Peter (Catherine)
715 Glen Ave
Westfield, NJ 07090-4326
908-355-3600
FAX: 908-355-9490

MOAWAD, John (Heidi)
Akron Vascular Associates
95 Arch St, #215
Akron, OH 44304
330-434-0145
johnmoawad@yahoo.com

MOHAN, Ayappalayam R (Lidia)
3825 Newark Court
Claremont, CA 91711
909-629-0530
FAX: 909-629-7300

MOHAN, Chittur R (Radhika)
Frankford Hospital
2137 Welsh Rd, Ste #1C
Philadelphia, PA 19115
215-969-3944
FAX: 215-969-3886
radmo85@yahoo.com

MOHR, Lester L (Maureen)
1649 Smiley Heights Dr
Redlands, CA 92373
909-887-7951
FAX: 909-743-0388

* Senior † New Members # Candidate § Inactive
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

MOMIN, Takki A
Georgetown University/
Washington Hospital Center
50 Irving St, NW
Washington, DC 20009
678-478-8414
takki92@yahoo.com

MONEY, Samuel R (Jennifer)
Mayo Clinic
979 E Mayo Blvd
Speciality Building – 3rd Floor
Phoenix, AZ 85054
480-342-2868
FAX: 480-301-8414
money.samuel@mayo.edu

* MONGE, James (Mary Ann)
University of MN–Duluth School of Medicine
3131 E. Third St
Duluth, MN 55812

* MONTEGUT, Ferdinand J (Margaret)
289 Merry Circle
Orange, CT 06477
203-926-1729
FAX: 203-925-8264
monte289@aol.com

MOORE, Colleen J
SIU School of Medicine
PO Box 19680
Springfield, IL 62794-9680
217-545-7983
FAX: 217-545-9711
cmoore@siumed.edu

MORASCH, Mark D (Gemma)
Northwestern University Feinberg School
676 North St. Clair, Suite 650
Chicago, IL 60611
312-695-3744
FAX: 312-695-4955
mmorasch@nmh.org

* MORI, Victor M (Marilyn)
1434 Punahou St 400
Honolulu, HI 96822
808-595-2108
FAX: 808-595-3552
vmori@aloha.com

MORITZ, Mark W (Martha)
Surgical Specialists of New Jersey
95 Madison Ave
Morristown, NJ 07960
973-539-6900
FAX: 973-539-6115
mmoritz@vinj.us

MORRISSEY, Nicholas J
161 Ft. Washington Ave Suite 639
New York, NY 10032
212-324-2929
njm2106@columbia.edu

MOSS, Charles M (Denise)
Hackensack Univ Medical Center
20 Prospect Ave, #707
Hackensack, NJ 07601
201-488-2220
FAX: 201-343-9106
cmmossmd@optonline.com

MOSS, Robert R (Donna)
Marian Medical Center
525 E. Plaza Drive, #204
Santa Maria, CA 93454
805-925-3030
FAX: 805-925-6453
rmoss@surgicalinc.com

MOTAGANAHALLI, Raghunandan L (Dipti Motaganahalli)
Indiana-Purdue University
Methodist Hospital
1801 N. Senate Blvd MPC 2,
Ste D3500
Indianapolis, IN 46202
317-962-0282
FAX: 317-962-0289
raghunandanml@yahoo.com

MOTTA, John C (Kim)
Surgical Assoc of Palm Beach County
670 Glades Rd, Suite 300
Boca Raton, FL 33431
561-395-2626
FAX: 561-750-3878
MOUDGILL, Neil
Thomas Jefferson University Hospital
111 S. 11th St, Suite 6270,
Gibbon Bldg
Philadelphia, PA 19107
U.S.A.
302-983-4383
neil.moudgill@gmail.com

MOUSA, Albeir Y
27 Cartier Drive
Franklin Park, NJ 08823
917-783-6489
mousamd@aol.com

MUCK, Patrick E (Sherry)
Queen City General and Vascular Surgery
7502 State Rd, Ste 1180
Cincinnati, OH 45255
513-872-3595
FAX: 513-961-7141
pmuck@fuse.net

MUKHERJEE, Avik (Akta)
Virginia Commonwealth University Medical Center
417 N. 11th St, N. 11th St #3
Richmond, VA 26298
804-523-4186
vikm@comcast.net

MULLICK, Subhas C (Swadesh)
2936 Sand Wedge Lane
Naples, FL 34110
239-514-1112

MULLIN, Timothy J (Fran)
P.O. Box 22
Angwin, CA 94508
707-268-0547

MULUK, Satish C (Visala)
Allegheny General Hospital
320 E. North Ave, 14th floor, South Towe
Pittsburgh, PA 15212
412-393-3714
FAX: 412-393-3715
muluk@usa.net

MUREEVE, Leila
Duke University Medical Center
Vascular Surgery
Vascular Surgery, Box #3467
Durham, NC 27710
919-681-2800
FAX: 919-668-3284
Leila.Mureebe@duke.edu

MURRAY, James D
15213 Cannon Lane
Chino Hills, CA 91709
909-393-0550
FAX: 909-393-0510
buceodoc@aol.com

MURRAY, Robert E
1 Shrader St, #550
San Francisco, CA 94117-1014
FAX: 415-668-8325

MUSICANT, Michael E (Myla)
5565 Grossmont Center Dr, #221
La Mesa, CA 91941
619-462-7933
FAX: 619-462-7933
musmd@cox.net

MUSSA, Firas F
NYU School of Medical
530 First Ave, Ste 6F
New York, NY 10016
212-263-7311
FAX: 212-263-7722
firas.mussa@med.nyu.edu

MUTO, Paula M (Jonathan)
100 Amesbury St
Lawrence, MA 01840
978-689-3474
FAX: 978-689-0493
pmuto@mutosurgical.com

MUTYALA, Manikyam
(Uma Gavarasana)
276 85th Ave
Floral Park, NY 11001
516-358-1674
FAX: 718-486-4259
mutyala68@hotmail.com

NAFFAH, Paul (Dorothy)
6161 So. County Line Rd
Hinsdale, IL 60521
630-986-5123

* Senior † New Members # Candidate § Inactive
NAFICY, Sepehr
Queen of the Valley, Fairfield Hospital
3500 Harbison Dr, #635
Vacaville, CA 95687
901-747-3066
sn55@cornell.edu

NALBANDIAN, Matthew M (Nina)
247 Third Ave, Ste L1
New York, NY 10010
212-254-6882
FAX: 212-254-6886
matthew.nalbandian@nyumc.org

* NANKIN, Pablo (Eleanor)
1125 S. Beverly Drive, Suite 610
Los Angeles, CA 90034
310-435-0513
FAX: 310-385-1304
pablo1944@sbcglobal.net

NANNERY, W. Mark (Maura)
Neponset Valley Surgical, P.C.
490 Chapman St, #101
Canton, MA 02021-2039
781-828-4030
FAX: 781-828-7730
mcnannery@comcast.net

NAOUM, Joseph J
The Methodist Hospital
6550 Fannin, Suite 1401
Houston, TX 77030
713-441-9309
FAX: 713-790-3393
jjnaoum@tmhs.org

NASIR KHAN, Mohammad U (Saba N. Khan)
Maine Heart Surgical Associates
21B Northbrook Dr
Falmouth, ME 04105
207-774-5479
drusman_md@hotmail.com

NASLUND, Thomas C (Carole)
Vanderbilt Univ Medical Center
Vascular Surgery
1161 21st Ave South, D-5237 MCN
Nashville, TN 37232-2735
615-322-2343
FAX: 615-343-4251
thomas.naslund@vanderbilt.edu

NATH, Ronald L (Kathleen)
91 Montvale Ave, #208
Stoneham, MA 02180
781-279-1123
ronaldmd@aol.com

† NAZZAL, Munier M
University of Toledo Medical Center
3000 Arlington Ave
Toledo, OH 43614
419-383-6810
FAX: 419-383-3238
munier.nazzal@utoledo.edu

* NELSON, Harry M (Kay)
1972 Arnold Palmer Drive
Shallotte, NC 28470-5290
803-681-9979

† NEMHAUSER, Gary M (Enid)
3801 Katella, #222
Los Alamitos, CA 90720
310-598-4454
FAX: 310-799-0750

NERAVELA, Surender R (Suchitra Neravela)
Springfield Heart Surgeons, LLC
Springfield, OH 45504
937-324-5511
FAX: 937-398-0652
neravela@yahoo.com

NESCHIS, David G (Kim)
Maryland Vascular Center/
Baltimore Medical Center
301 Hospital Dr
Glenn Burnie, MD 21061
410-553-8300
FAX: 410-553-8349
dneschis@bwmc.umms.org

NEVILLE, Richard F (Alison)
George Washington University Division of Vascular Surgery
2150 Pennsylvania Avenue, NW
Suite 6B-407
Washington, DC 20037
202-741-3210
FAX: 202-741-3219
rneville@mfa.gwu.edu

* Senior † New Members # Candidate § Inactive
* NIGHTINGALE, David S (Patricia)
 6900 US Highway 42
 Louisville, KY 40241-5826
 502-587-0636

NITZBERG, Richard S (Frances)
 Summit Medical Group, P.A.
 1 Diamond Hill Rd
 Berkeley Heights, NJ 07922
 908-673-7250
 FAX: 908-673-7350
 rsnitz@aol.com

NOWAK, Lisa R (Andrew)
 Vascular Institute of the Rockies
 1601 E. 19th Ave, #3950
 Denver, CO 80218-1256
 303-539-0736
 FAX: 303-539-0737
 nowak@vascularinstitute.com

* NUTTING, Robert O
 301 No. Prairie Ave
 Inglewood, CA 90301
 310-683-6950
 FAX: 310-671-9989
 cracker133@verizon.net

NYPAVER, Timothy J (Michele)
 Henry Ford Hospital
 2799 W. Grand Blvd, Vascular Surgery
 Detroit, MI 48202
 313-916-3153
 FAX: 313-916-3023
 tnypave1@hfhs.org

O’BRIEN, Patrick
 Duke University Medical Center
 DUMC 2900
 Durham, NC 27710
 304-634-8054
 obrien2004@gmail.com

O’CONNELL, Jessica B (Ratti Bagdasarian)
 UCLA & West LA VA Hospital
 14441 Benefit St, #1
 Sherman Oaks, CA 91423
 310-709-8584
 jbocejboc@hotmail.com

#†O’CONNOR, David
 Mount Sinai Medical Center
 5 East 98th St, 4th Floor
 New York, NY 10029
 646-379-1200
 djo5853@hotmail.com

#†O’DONNELL, Paul
 RWJ University Hospital
 1 RWJ Place, MEB-541
 New Brunswick, NJ 08903
 732-235-7816
 podonnelldo@hotmail.com

O’KEEFFE, Shane D
 Englewood Hospital and Medical Center
 2903 Wimbledon Way
 Blackwood, NJ 08012
 201-894-3141
 asbrotman@yahoo.com

O’BRIEAL, Gonzalo (Marisol Tintiman)
 East Bay Vascular Medical Group
 365 Hawthorne Avenue, Suite 103
 Oakland, CA 94609
 917-596-1399
 FAX: 510-326-169
 gobnial@yahoo.com

OCHOA CHAAR, Cassius Iyad
 University of Pittsburgh Medical Center
 200 Lothrop St, A-1017
 Pittsburgh, PA 15213
 203-676-5835
 ochoachaarci@upmc.edu

#†OCHOA, Lyssa N
 Baylor College of Medicine
 One Baylor Plaza 404D
 Houston, TX 77030
 713-385-3926
 lochoa@bcm.edu

* Senior † New Members # Candidate § Inactive
O'CONNOR, Arthur J, III (Ellie)
2600 East Southern, #E1
Tempe, AZ 85282
480-839-0927
FAX: 480-345-8243

ODERICH, Gustavo S
(Thania A. Macedo)
Mayo Clinic
200 First St, SW
Rochester, MN 55905
507-284-1575
FAX: 507-266-7156
oderich.gustavo@mayo.edu

*OKADA, Floyd (Janet)
14085 Taos Drive
Saratoga, CA 95070
408-867-7040
floydokada@aol.com

*OLCOTT, Cornelius, IV (Phoebe)
Stanford Univ Med Center
Dw Vasc Surgery, Rte 2, H-3630
Stanford, CA 94305
650-498-6036
FAX: 650-498-6044
olcott@stanford.edu

OLDENBURG, W. Andrew
(Kathleen)
Mayo Clinic, Sec Vascular Surgery
4500 San Pablo Rd
Jacksonville, FL 32224
904-953-2077
FAX: 904-953-7368
oldenburg.warner@mayo.edu

*OLDFIELD, R. Charles (Petie)
2500 Indigo Ln Unit 404
Glennie, IL 60026-8309
847-486-0653

OLSON, Dennis H
3655 Lutheran Parkway, #402
Wheat Ridge, CO 80033-6017
303-422-9600
FAX: 303-422-1264
olsdh@netzero.net

ORTEGA, Raul E (Brigid Ortega)
8561 Buffalo Dr
Lantana, TX 76226-5528
201-894-3141
FAX: 201-227-5551
reomd@yahoo.com

OSKIN, Timothy C
Progressive Physician Associates, Inc.
3735 Nazareth Rd, Ste 206
Easton, PA 18045
610-252-8281
FAX: 610-252-8614
toskin@ppamail.com

*OZERAN, Robert S (Susan)
1979 Sage Grouse Lane
Lewiston, ID 83501-2407
310-472-1569
FAX: 310-472-2189

OZSVATH, Kathleen J (Gary)
Vascular Institute
43 New Scotland Ave, MC 157
Albany, NY 12208
518-262-5640
FAX: 518-262-6720
ozsvathk@albanycvascular.com

*PAGE, Arthur (Lizette)
7600 rue Beique
Canada
514-338-2170
FAX: 514-338-2481
pagea@symfatico.ca

PALCHIK, Eugene
Temple University Hospital
631 Dupont St Apt A301
Philadelphia, PA 19128-2653
215-707-6273
eugene.palchik@tuhs.temple.edu

PALMER, Michael A (Keta)
2321 Harrison Avenue
Eureka, CA 95501-3216
707-442-4175
FAX: 707-445-1722

PANASCI, Anthony (Marie)
25880 Tournement Rd, #222
Valencia, CA 91355
805-254-0720
FAX: 805-254-0860
adpanasci@att.net

PANNETON, Jean M (Elaine)
Eastern Virginia Medical School
Sentara Heart Hospital
600 Gresham Dr, #8620
Norfolk, VA 23507
757-622-2649
pannetjm@evms.edu
PAPOYAN, Simon A
15 Municipal Hospital Moscow
23 Veshnyakovskaya St
Moscow, 143903
Russia
+79262209792
spapoyan@rambler.ru

PARENT, F. Noel, III (Kathleen)
Vascular & Transplant Spec, P.C.
397 Little Neck Rd, #100
Virginia Beach, VA 23452
757-470-5570
FAX: 757-961-4511
fnparent@sentara.com

PARK, Brian D
Washington Hospital Center
460 Taylor St, NE
G34
Washington, DC 20017
267-218-2787
Brian.D.Park@medstar.net

PARK, Thomas C (Jeanny)
PO Box 4357
Davis, CA 95617
916-929-6705

PASCH, Allan R (Sandra)
5150 N. Port Washington Rd, Ste 151
Milwaukee, WI 53217-5453
414-332-1000
FAX: 414-332-1005
apasch@pol.net

PASKLINSKY, Garri (Natalya)
Stony Brook University Medical Center
G9-35C 186th L.A, Apt 3C
Fresh Meadows, NY 11365
631-444-1279
garr.pasklinsky@stonybrook.edu

PASSMAN, Marc A (Cora)
UAB Medical Center, Vascular Surgery
BDB 505, 1808 7th Ave, South
Birmingham, AL 35294-0012
205-934-2003
FAX: 205-934-0053
marc.passman@ccc.uab.edu

PASZKOWIAK, Jacek J (Barbara)
Augusta Medical Center
7240 Smith Creek Rd
New Market, VA 22844-3522
540-332-5990
FAX: 540-332-5990
paszk@comcast.net

PATEL, Kumar R (Poorvi)
230 Sherman Avenue
Glen Ridge, NJ 07028
201-748-8585
FAX: 201-748-5990

PATEL, Nirav S
Maimonides Medical Center
81-31 266 St
Floral Park, NY 11004
niravpatel9@hotmail.com

PATRI, Ramesh C (Hymavathi)
10404 W. Coggins Dr, Ste 117
Sun City, AZ 85351
623-977-3335
FAX: 623-977-1015
rcpatri50@q.com

PATTERSON, Donald E
Evansville Surgical Associates
520 Mary St
Suite 520
Evansville, IN 47710
317-474-1667
stentdoc@yahoo.com

PATY, Philip SK (Dawn)
The Vascular Group, PLLC
43 New Scotland Ave, MC-157
Albany, NY 12208
518-262-8720
FAX: 518-262-6720
patyp@albanyvascular.com

PEARL, Gregory J (Alison)
Texas Vascular Associates
621 North Hall St, #100
Dallas, TX 75226
214-821-9600
FAX: 214-823-5290
gregp@baylorhealth.edu

* Senior † New Members # Candidate § Inactive
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEDEN, Eric K (Alicia)</td>
<td>The Methodist Debakey Heart and Vascular Center</td>
<td>6550 Fannin, Suite 1401, Houston, TX 77030</td>
<td>713-441-5200</td>
<td>713-441-6298</td>
<td>ekpeden@tmhs.org</td>
</tr>
<tr>
<td>PEER, Richard M (Janet)</td>
<td>14 Georgetown Ct</td>
<td>Williamsville, NY 14221</td>
<td>716-856-1200</td>
<td>716-634-8118</td>
<td>rpeer115@aol.com</td>
</tr>
<tr>
<td>PELLECCHIA, Patrick E (Kathleen)</td>
<td>1533 Old Welsh Rd</td>
<td>Huntingdon Valley, PA 19006</td>
<td>215-947-9272</td>
<td>215-947-6487</td>
<td></td>
</tr>
<tr>
<td>PENNELL, Richard C (Chris)</td>
<td>St. John's Mercy Medical Center</td>
<td>621 So. New Ballas Rd, #7011B, St. Louis, MO 63141</td>
<td>314-569-6840</td>
<td>314-995-4174</td>
<td>rick@pennell.net</td>
</tr>
<tr>
<td>PEREYRA, Robert (Denise)</td>
<td>1560 E. Chevy Chase Dr, #430</td>
<td>Glendale, CA 91206</td>
<td>818-243-1135</td>
<td>818-243-9332</td>
<td></td>
</tr>
<tr>
<td>PETERS, Albert F (Harriet)</td>
<td>622 W. Duarte Rd, #301</td>
<td>Somerville, MA 02145-2438</td>
<td>617-945-4433</td>
<td>617-718-2472</td>
<td>scalpelaf@aol.com</td>
</tr>
<tr>
<td>PETRIK, Pavel V (Linda)</td>
<td>1331 West Avenue J, #203</td>
<td>Lancaster, CA 93534</td>
<td>661-945-4433</td>
<td>661-718-2472</td>
<td>p.petrikmd@verizon.net</td>
</tr>
<tr>
<td>PFEIFER, John S (Suzan)</td>
<td>2630 Wahiawa Drive</td>
<td>Richmond, VA 23236-1350</td>
<td>804-814-5418</td>
<td></td>
<td>littlegreycells@comcast.net</td>
</tr>
<tr>
<td>PHADE, Sachin</td>
<td>University of TN College of Medicine Chattanooga</td>
<td>979 East Third St, Ste B 401, Chattanooga, TN 37403</td>
<td>423-778-7895</td>
<td>423-778-2950</td>
<td>sachin.phade@erlanger.org</td>
</tr>
<tr>
<td>PHO, Da Ba (Anne)</td>
<td>6727 Lemon Leaf Dr</td>
<td>Carlsbad, CA 92011</td>
<td>760-930-9381</td>
<td>760-436-3131</td>
<td>phobada@yahoo.com</td>
</tr>
<tr>
<td>PITLUK, Howard C (Elizabeth)</td>
<td>2211 E. Camelback Rd, #804</td>
<td>Phoenix, AZ 85016</td>
<td>602-468-3131</td>
<td>602-468-3131</td>
<td>howard@pitluk.us</td>
</tr>
<tr>
<td>PLESTED, William G, III (Carolyn)</td>
<td>405 North Kenter Avenue</td>
<td>Los Angeles, CA 90049</td>
<td>310-393-0274</td>
<td>310-393-0274</td>
<td>wgplested@aol.com</td>
</tr>
<tr>
<td>POBLETE, Honesto M</td>
<td>Mount Sinai School of Medicine</td>
<td>306 E. 96th St, Apt 16J</td>
<td>212-241-5315</td>
<td>212-241-5315</td>
<td>honesto.poblete@mssm.edu</td>
</tr>
<tr>
<td>PODOLSKY, Robert S (Joy)</td>
<td>Vascular Associates of Northern Virginia</td>
<td>1760 Reston Parkway, #306</td>
<td>703-709-7610</td>
<td>703-709-7988</td>
<td>rpodolsky@aol.com</td>
</tr>
<tr>
<td>POLLAK, Erich W (Martha)</td>
<td>2542 Westwood Blvd</td>
<td>Los Angeles, CA 90064</td>
<td>213-962-4011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POMPOSELLI, Frank B (Ann)</td>
<td>Beth Israel Deaconess Hospital</td>
<td>1 Deaconess Rd, Boston, MA 02215</td>
<td>617-632-9847</td>
<td>617-632-9777</td>
<td>frank.Pomposelli@steward.org</td>
</tr>
</tbody>
</table>

* Senior † New Members # Candidate § Inactive
PONS, Peter J
Alabama Vascular Surgery, P.C.
541 West College St, Ste 2000
Florence, AL 35630
256-764-2482
pjcuter@aol.com

* PORTER, Howard R
900 Kiely Blvd
Santa Clara, CA 95051
408-236-4859

POWELL, C. Steven (Melissa)
East Carolina University School of Medicine
Department of Surgery
Greenville, NC 27858
252-816-4668
FAX: 252-816-3794
powellcs@mail.ecu.edu

PREM, Jeffrey T (Jane)
1445 Harrison Ave NW, #103
Canton, OH 44708
330-588-8900
FAX: 330-588-8990
jprem@regionalsurgicalinc.net

* PRUITT, J. Crayton
455 Pinellas St
Clearwater, FL 33756
727-446-2273
FAX: 727-441-4966
jpruitt153@aol.com

PUCKETT, John W (Elaine)
28822 Jaeger Dr
Laguna Niguel, CA 92677
949-574-7180
FAX: 949-574-7180

PUENTE, Orlando A
8955 SW 87th Court, #112
Miami, FL 33176
305-596-0600
FAX: 305-598-7965
opuentemd@hotmail.com

PUENTI, Alessandra
1928 E. Highland Ave, Ste F104-460
Phoenix, AZ 85016
480-628-2640
alpuggions2000@yahoo.com

PURCELL, Roland R
661 E. 84th St
Brooklyn, NY 11236
718-783-1200
FAX: 718-953-1178
vascpeds@aol.com

PURCELL, William A (Mary)
North Shore University Hospital
900 Northern Boulevard, Suite 140
Great Neck, NY 11021
516-466-0485
FAX: 516-466-6776
wpurcell optimum.net

QIN, Feng
Lenox Hill Hospital
130 E. 77th St
New York, NY 10075
212-434-3420
qinsurgery@gmail.com

QUAN, Reagan W
Madigan Army Medical Center
9040-A Fitzsimmons Avenue
Tacoma, WA 98431
253-968-2290
reagan.quan@us.army.mil

QUERAL, Luis A (Maria)
Mercy Medical Center
301 St. Paul Place, 5th Floor
Baltimore, MD 21202
410-332-9404
FAX: 410-337-5599
lqueral@vassurg.com

QUIGLEY, William (Patricia)
22 Quarry Village Rd
Cheshire, CT 06410
203-574-6314
FAX: 203-574-6089

QUINN, Brendon M
701 Grove Rd
Greenville, SC 29605
864-455-7886
FAX: 864-455-1320
quinnbrendon@yahoo.com

* Senior † New Members # Candidate § Inactive
QUINONES-BALDRICH, William J (Sherrylin)
UCLA Med Ctr, Dept of Surgery
200 UCLA Medical Plaza,
Suite 510-3
Los Angeles, CA 90095-6904
310-825-7032
FAX: 310-206-2992
wquinones@mednet.ucla.edu

RADE, Michael P
South Towns Surgical Associates, P.C.
310 Sterling Dr, Suite 105
Orchard Park, NY 14127
716-675-7330
FAX: 716-675-7735
emrade@aol.com

RAFFETTO, Joseph D (Tamara)
VA Boston Healthcare System
1400 VFW Prkwy, Surgery 112,
Vascular
West Roxbury, MA 02132
617-323-7700
FAX: 617-363-5567
joseph.raffetto@med.va.gov

RAFIDI, Fuad F (Sawsan)
San Fernando Valley Vascular Group
18372 Clark, #218
Tarzana, CA 91356
818-395-6126
FAX: 818-345-5061
frafidi@aol.com

RAHBAR, Ahmad (Marylon)
Wheeling Heart Institute, Inc.
1021 Mt. De Chantal Rd
Wheeling, WV 26003
304-243-1000
FAX: 304-243-0707

RAJANJ, Ravi
Cleveland Clinic
9500 Euclid Avenue, Department of Vascular Surgery
Cleveland, OH 44195
216-756-6510
rajar@ccf.org

RAJASINGHE, Hiranya A
Anchor Health Center
2450 Goodlette Rd N., Ste 102
Naples, FL 34103-4595
239-643-8794
FAX: 239-202-8129
rajasinghe@aol.com

RAJU, Ramanathan (Samanathi)
25 Windy Hollow Way
Staten Island, NY 10304
212-788-3321
FAX: 212-788-0040
rajur@nychhc.org

RAKHLIN, Elena Y
1835 Arch St, Apt 1412
Philadelphia, PA 19103-2784
215-439-7807
elena.rakhlin@uphs.upenn.edu

RAMADAN, Fuad M (Michelle)
Melbourne Vascular Center
1250 S. Harbor City Blvd
Suite A
Melbourne, FL 32901
321-725-8919
FAX: 321-725-8854
flyerdoc@melbournevascular.com

RAMAKRISHNAN, Vellore R (Kalpana)
15146 Levan Rd, #46
Livonia, MI 48154-5027
313-462-8401
FAX: 734-462-1410
aram02@gmail.com

RAMANATHAN, Anantha K (Mythily)
Gosford Hospital
PO Box 833
Wyong Post Shop
Wyong, NSW 2259
Australia
01161447000950
aram02@gmail.com

* RAMS, James J (Jan)
112 Yorkshire Drive
Pittsburgh, PA 15238
412-963-7984
jjrams2@aol.com
SCVS • 40TH ANNUAL SYMPOSIUM ON VASCULAR SURGERY

* RAPHAEL, Hugh A (Jo)
4662 Pine Valley Place
Westlake Village, CA 91362
818-882-3397
FAX: 805-496-0276

RAU, Richard M (Carolyn)
30625 Sixth Ave
Redlands, CA 92374
909-794-8878
FAX: 909-794-5483
RichardMrau@gmail.com

* RAVIOLA, Carol A
103 Pine St
Philadelphia, PA 19106-4311
215-829-6520
FAX: 215-829-5071

RAYMOND, Leland R (Judy)
935 Trancas St, Ste 2A
Napa, CA 94558
707-252-4955
FAX: 707-252-0525
napalee@pacbell.net

† REEVES, James G
Emory University Hospital
690 Park Ln
Decatur, GA 30033
404-545-5338
iron140.6@gmail.com

REEVES, John W (Lillian)
25 Lucerne Drive
Palm Desert, CA 92260-0618

REIFSNYDER, Thomas
Johns Hopkins Bayview
Department of Surgery
4940 Eastern Ave, Bldg 5A-Center
Baltimore, MD 21224
410-550-4335
wpga@pbsgroup.org

REILLY, M. Kathleen
Inland Vascular Institute
122 West 7th Ave, #420
Spokane, WA 99204
509-838-8286
FAX: 509-625-1888
kreilly@inlandvascular.com

RHEE, Robert Y (Elizabeth)
Univ of Pittsburgh Medical Center
5200 Centre Ave
Suite 313
Pittsburgh, PA 15232
412-383-7074
FAX: 412-647-0289
rheery@upmc.edu

RHEE, Sang W (Kay)
Vasc Svcs of Western New England
3500 Main St, #201
Springfield, MA 01107
413-784-0900
FAX: 413-781-5035
srhee@vascular-services.com

RHODES, Jeffrey M (Lisa)
Rochester General Hospital
20 Hagen Drive, Suite 210
Rochester, NY 14625
585-922-5300
FAX: 585-922-0450
jeffrey.rhodes@rochestergeneral.org

RIAZ, Omer
Montefiore Medical Center
3400 Bainbridge Ave, 4th floor
Bronx, NY 10467
804-986-6637
riazoj@gmail.com

RICHARDSON, Albert I
South Georgia Surgical Associates
Vascular and Transplant Specialists
100 Mimosa Dr, 3rd Floor
Thomasville, GA 31792
757-622-2649
FAX: 757-961-8440
mercerdoc@yahoo.com

* RICHARDSON, Robert E (Barbara)
Robert E. Richardson MD, P.C.
1812 Happy Valley Rd
Santa Rosa, CA 95409-4079
704-545-2436
FAX: 707-545-8109
termdpc@aol.com

* Senior † New Members # Candidate § Inactive
RICHMAND, David M (Debbie)
Garden State Surgical Assoc
1511 Park Ave
South Plainfield, NJ 07080
908-561-9500
FAX: 908-561-7162

RICOTTA, John J (Gloria)
Washington Hospital Center
110 Irving St NW, Room G253
Washington, DC 20010
202-877-5133
FAX: 202-877-3699
john.j.ricotta@medstar.net

RICOTTA, Joseph J, II
Emory University
1365 Clifton Rd NE, Suite 3200,
Bldg A
Atlanta, GA 30322
404-778-5451
joseph.ricotta@emoryhealthcare.org

RISENMAN, Paul J
Division of Vascular Surgery and Endovascular Therapy
101 Woodruff Circle, 5105-WMB
Atlanta, GA 30322
404-254-5717
FAX: 404-966-2898
trey.riesenman@emory.edu

RIFKIN, Kerry V (Janice)
Vascular Surgery
2140 Kingsley Ave #14
Orange Park, FL 32073
904-276-7997
FAX: 904-276-7599
terrifkin@aol.com

RIGGS, Michael O (Debra)
5401 No. Portland, #250
Oklahoma City, OK 73112
405-604-4350
FAX: 405-604-4351

RILLING, David C
670 Lawn Ave
Sellersville, PA 18960
215-257-3697
killing@tradenet.net

RIMAR, Steven D (Janet)
William Beaumont Hospital
4600 Investment Drive
Troy, MI 48089
248-267-5005
FAX: 248-267-5006
stevenrimar@comcast.net

RITS, Yevgeniy M
Mayo Clinic
200 First St, SW
Rochester, MN 55905
507-255-7062
Rits.Yevgeniy@mayo.edu

RIZK, Toufic A (Anne)
Unity Vascular Surgery
45 Chelsea Park
Pittsford, NY 14534
203-375-2861
FAX: 203-375-5615
rizks6@hotmail.com

ROBBINS, Lester E (Barbara)
304 Eagle Drive
Jupiter, FL 33477

ROBINSON, Gerald N (Joyce)
670 Glades Rd, Ste #300
Boca Raton, FL 33431-6464
561-395-2626
FAX: 561-750-3878

ROBINSON, Hurley (Mary Anne)
125 Garnet Avenue
Newport Beach, CA 92662
714-673-1183

ROBSON, Larry J (Sally)
2765 Woodcliff Circle SE
Grand Rapids, MI 49506
616-459-7258
FAX: 616-459-5215
ljrobsonmd@aol.com

ROCKMAN, Caron R (Gary)
NY University Medical Center
530 First Ave, #6F
New York, NY 10016
212-263-7311
FAX: 212-263-7722
caron.rockman@nyumc.org
RODDY, Sean P (Veronica)
The Vascular Group, PLLC
43 New Scotland Ave, MC157
Albany, NY 12208
518-262-5778
FAX: 518-262-6720
roddys@albanyvascular.com

RODRIGUEZ, Agustin A
(Liana Lopez)
PO Box 364683
San Juan, PR 00936-4683
787-763-2440
FAX: 787-763-3898
drugusrodriguez@aol.com

ROEDERSHEIMER, L. Richard
(Marianne)
3747 W. Fork Rd
Cincinnati, OH 45247-7548
513-961-4335
FAX: 513-961-4227
LRRVSURG@zoomtown.com

* ROEDLING, Herbert A
1015 N. Beverly Dr
Beverly Hills, CA 90210
310-275-7476
grinding@aol.com

* ROLAND, Norman B
27771 No. 103rd Place
Scottsdale, AZ 85262
nbr37@cox.net

ROLLINS, David L. (Carol)
36060 Euclid Ave, #107
Willoughby, OH 44094
440-269-8346
FAX: 440-975-5763
drollins@safer.com

* ROOS, David B (Edith)
7 Canon Place
Greenwood Village, CO 80111-3205

ROSALES, Carlos A
West Penn Allegheny Health System
2566 Haymaker Rd, POB #1
Suite 201-203
Pittsburgh, PA 15146
412-736-6271
FAX: 513-558-5036
carosales01@gmail.com

ROSCA, Mihai
NS-LIJ Health System
1999 Marcus Ave
Lake Success, NY 11042
347-661-3074
FAX: 516-627-3130
mihairoasca@optonline.net

ROSENFELD, Joel C (Beth)
St. Luke’s Hospital
801 Ostrum St
Bethlehem, PA 18015
484-526-2540
FAX: 484-526-6450
rosenfj@slhn.org

* ROSENTAL, John J (Linda)
Long Beach Surgical Group
1040 Elm Ave, #303
Long Beach, CA 90813-3267
562-436-9645
FAX: 562-436-7119
rosental@att.net

ROSS, Charles B (Kimberly)
University of Louisville Division of
Vascular Surgery and Endovascular
Therapy
550 South Jackson St
Louisville, KY 40202
502-852-5413
FAX: 502-852-8915
charles.ross@louisville.edu

ROUGH, William A (Cathy)
668 Main St, Ste 4
Lumberton, NJ 08048
609-267-6111
FAX: 609-265-8668
wrough741@comcasts.net

* Senior † New Members # Candidate § Inactive
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

ROWE, Vincent L
(Pauline Davidson)
Keck Medical Center of USC
University of Southern California
1520 San Pablo St, Suite 4300
Los Angeles, CA 90033
323-442-6835
FAX: 323-442-5735
vincent.rowe@med.usc.edu

RUBIN, Brian G (Susan)
660 S. Euclid Ave, Campus Box 8109
St. Louis, MO 63110-1094
314-362-7331
FAX: 314-362-7363
rubinb@wustl.edu

RUBIN, Jeffrey R (Janis)
Detroit Medical Center/Harper
University Vascular Surgery
3990 John R
Detroit, MI 48201
313-745-8637
FAX: 313-993-0244
jrubin@med.wayne.edu

RUBY, Steven T (Gail)
1000 Asylum Ave, #2120
Hartford, CT 06105
860-246-4000
FAX: 860-527-6985
rubysteve@comcast.net

RUEDA, Carlos A (Jessica)
Texas A&M; Scott & White Medical Center
607-B Olaf Drive
Temple, TX 76504
720-949-5057
carlosruedamd@gmail.com

RUPANI, Bobby J
UMDNJ
12 Anderson Ave
Rockaway, NJ 07866
973-972-6295
bobbyrupani@hotmail.com

* RUSH, L. Vaughan, Jr (Frances)
1314 19th Ave
Meridian, MS 39301
601-482-9232
FAX: 601-482-9403

RUSHTON, Fred W, Jr (Barbara)
University of MS Medical Center,
Division of Vascular Surgery
2500 North State St, L228-4
Jackson, MS 39216
601-984-2680
FAX: 601-815-4563
frushton@surgery.umsmed.edu

* RUTHERFORD, Robert B (Kay)
14337 Dorsal St
Corpus Christi, TX 78418
361-949-0327
FAX: 361-949-8381
rbruth@aol.com

RYER, Evan
Geisinger Medical Center
100 N. Academy Ave M.C. 27-70
Danville, PA 17822
570-271-6369
FAX: 570-271-5840
ejryer@geisinger.edu

SADIGHI, Abraham (Tammy)
Gulfcoast Cardiothoracic and Vascular Surgery
8010 Summerlin Lakes Drive, Ste 100
Fort Myers, FL 33907
239-9397567
FAX: 239-9395895
sadghi6@aol.com

SAFI, Hazim J (Deborah)
University of TX-Houston Medical School
6400 Fannin, Ste 2850
Houston, TX 77030
713-500-5304
FAX: 713-500-0647
hazim.j.safi@uth.tmc.edu

SALARTASH, Khashayar (Mandanna)
Salarrath Surgical Associates
301 Central Ave, Ste D
Egg Harbor Twp, NJ 08234
609-926-5000
FAX: 609-926-2020
salartash@comcast.net
SALES, Clifford M (Cathy)
The Cardiovascular Care Group
433 Central Avenue
Westfield, NJ 07090
973-759-9000
FAX: 973-751-3730
csales@tcvcg.com

SALLOUM, Sasha A
Mount Sinai Hospital
5 E 98th St, 4th floor
New York, NY 10029
917-208-0721
sasha.salloum@gmail.com

SALTER, Robert K (Joan)
4260 Pinehurst Circle
Stockton, CA 95219-1885
209-951-0749

SALTZBERG, Stephanie S (Darren)
The Vascular Group PLLC,
Albany Medical Center
23 Coachlight Dr
Poughkeepsie, NY 12603-4229
518-262-8720
FAX: 518-262-5110
saltzbergs@albanyvascular.com

SAMHOURI, Farouq Ali (Virginia)
1394 Tanglewood Dr
North Wales, PA 19454
215-969-3944
FAX: 215-969-3886
fsamhouri@comcast.net

SAMSON, Ian D (Linda)
5408 Via Carrizo
Laguna Woods, CA 92637-3092
908-363-0044
FAX: 732-363-3658
idsamson@aol.com

SAMSON, Russell H (Susan)
Sarasota Vascular Specialists
600 N. Cattlemen Rd, Suite 220
Sarasota, FL 34232
941-371-6565
FAX: 941-377-7731
rsamson@veinsandarteries.com

SANCHEZ, Luis A (Ilsa)
Washington Univ School of Med
660 S. Euclid Ave, Box 8109,
Surgery
St. Louis, MO 63110
314-362-7408
FAX: 314-362-7363
sanchezl@wudosis.wustl.edu

SANDRIDGE, Layne
2025 East Campbell Ave, #367
Phoenix, AZ 85016
lc.sand@yahoo.com

SANDROCK, William E (Winifred)
Rt 1, Box 3133
Anderson, CA 96007
916-365-3320
FAX: 916-365-4608

SANFELIPPO, Peter M (Cecelia)
1817 Ravenaues Lane
Tyler, TX 75703
903-581-2885
peter.safelippo@uthct.edu

SANNELLA, Nicholas A
7 Warwick Circle
Andover, MA 01810
978-470-2602
FAX: 978-470-1558

SANTILLI, Steven M (Jamie Santilli, MD)
University of Minnesota
420 Delaware St, SE
MMC #195 Mayo, #8195A
Minneapolis, MN 55455
612-625-1485
FAX: 612-626-4150
santii002@umn.edu

SANTOS, Angelo N (Laura)
Allegheny General Hospital
320 East North Ave
Pittsburgh, PA 15237
412-359-6907
freezingmd@comcast.net
SAQIB, Naveed U (Rubila)
University of New Mexico Hospital
5701 Centre Ave, Apt 407
Pittsburgh, PA 15206
412-715-3322
saqibnu@upmc.edu

SARAC, Timur P (Judith)
Cleveland Clinic Foundation
9500 Euclid Ave, Desk S61
Cleveland, OH 44195
216-445-3502
FAX: 216-444-9324
saract@ccf.org

SARFATI, Mark R (Jeannie)
30 N. 1900 East
Salt Lake City, UT 84103
801-581-8301
FAX: 801-581-3433

SAROYAN, Richard M (Elizabeth)
Kaiser Permanente Med Center
25828 So. Vermont Ave
Harbor City, CA 90710-3599
310-517-3400
FAX: 310-517-4075
marksaroyan@kp.org

SAUER, Paul E (Linda)
304 Chestnut St
Thayer, MO 65791
417-753-3170

SAVAGE, Lester R (Mary Ann)
The Hope Heart Inst
550 17th Ave, Ste 410
Seattle, WA 98122
206-353-3701
FAX: 206-353-9244
LSauvage@hopeheart.org

SAVIN, Ronald A (Carol)
235 Jackson Drive
Chagrin Falls, OH 44022
216-368-7194
FAX: 216-368-7538
csl18@po.cwru.edu

SAWCHUK, Alan P (Janet)
1801 N. Senate Blvd, MPC 2
Indianapolis, IN 46202
317-630-8854
FAX: 317-962-0289
asawchuk@iupui.edu

SBROCHI, Richard D (Anne)
7640 W. Sylvania Ave, #N
Sylvania, OH 43560
419-517-7575
FAX: 419-517-7576
sbroc4@aol.com

SCARPA, Francis J (Lorraine)
233 Byram Shore Rd
Greenwich, CT 06830
203-531-8908
FAX: 203-531-3418
fjscarpa@optonline.net

SCHANZER, Harry R (Helena)
993 Park Avenue
New York, NY 10028
212-396-1254
FAX: 212-396-1338
harryschanzer@hotmail.com

SCHATZELEIN, Michael H (Elizabeth)
7025 Woodcroft Lane
Fort Wayne, IN 46804-2891
219-435-7108
FAX: 219-435-7632

SCHER, Larry A
Montefiore Medical Center
111 E. 210 St
Bronx, NY 10467
718-920-4108
FAX: 718-231-9811
lscher@montefiore.org

SCHERMERHORN, Marc L (Jill)
Beth Israel Deaconess Medical Center
110 Francis St, Ste 5B
Boston, MA 02215
617-632-9971
FAX: 617-632-7977
mscherm@bidmc.harvard.edu

SCHILD, A. Frederick (Judy)
3848 FAU Boulevard
Boca Raton, FL 33431
561-219-4089
afschild@fiu.edu

SCHILLING, Jolyon D (Diane)
5240 E. Knight Dr, #116
Tucson, AZ 85712
520-795-5845
FAX: 520-320-1377
jollyschilling@aol.com
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCHMIEDER, Gregory C</td>
<td>3991 Dutchmans Ln, #103 Louisville, KY 40207</td>
<td>757-622-2649</td>
<td>gregschmieder@hotmail.com</td>
<td></td>
</tr>
<tr>
<td>SCHNEIDER, Joseph R (Shanda Pool-Schneider)</td>
<td>OSB 201, Central DuPage Hospital 25 North Winfield Rd Winfield, IL 60190 630-933-4487 FAX: 630-993-2009 joe_schneider@cdh.org</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHNEIDER, Peter A (Victoria)</td>
<td>Kaiser Foundation Hospital/ Hawaii Permanente 3288 Moanalua Rd Honolulu, HI 96819 808-432-8345 FAX: 808-432-7736 peterschneidermd@aol.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHNEIDER, Thomas A, II (Susan Ashley)</td>
<td>St. Charles Clinic 300 First Capitol Dr St Charles, MO 63301 314-940-5710 FAX: 314-940-5719 tas2surg@sbcglobal.net</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHUMACHER, Paul M</td>
<td>Vanderbilt University 1161 22nd Avenue, South, D-5237 MCN Nashville, TN 37232 615-322-2343 FAX: 615-343-4251 paul.schumacher@vanderbilt.edu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHUTZER, Richard W</td>
<td>North Shore/LIJ 1999 Marcus Avenue Lake Success, NY 10583 516-233-3701 FAX: 516-233-3605 Richws@gmail.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHWARTZ, John A (Christine)</td>
<td>143 Mariposá Terrace Medford, OR 97504 541-773-8153 jasmd@charter.net</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHWARTZ, Robert A (Barbara)</td>
<td>4507A Medical Center Drive Fayetteville, NY 13066 315-329-7711 FAX: 315-329-7755 rschwar1@twcny.rr.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHUTZER, Richard W</td>
<td>North Shore/LIJ 1999 Marcus Avenue Lake Success, NY 10583 516-233-3701 FAX: 516-233-3605 Richws@gmail.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCOBIE, T. Keith</td>
<td>Apartado 13, David Panama 613-729-8044</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMAAN, Elie S</td>
<td>New York Methodist Hospital 506 6th St Department of Surgery Brooklyn, NY 11215 718-780-3288 eliesemaan@hotmail.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHREIBER, Stephen, III (Judy)</td>
<td>1400 S. Orlando Ave, #105 Winter Park, FL 32789-5543 407-321-0444 FAX: 407-629-2580 jschreiberl@mac.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCHELDER, James J (Catherine)</td>
<td>Univ of Illinois, Vascular Surgery 5544 S. County Line Rd Hinsdale, IL 60521 312-996-7595 FAX: 312-996-2704 mjmouw@uic.edu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAFIQUE, Shoaib (Farah)</td>
<td>St. Elizabeth 8433 Harcourt Rd, Suite 100 Indianapolis, IN 46260 765-446-7901 endovsolutions@aol.com</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Senior † New Members # Candidate § Inactive
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

SHAH, Dhiraj M (Moklesa)
The Vascular Group, PLLC
43 New Scotland Ave, MC157
Albany, NY 12208
518-262-8720
FAX: 518-202-6720
shahd@albanyvascular.com

SHAH, Parth S (Tejal Shah)
Maimonides Medical Center
23 Lakeshore Drive, Apt B4
Farimgton, CT 06032
646-260-0590
shahparth@me.com

SHAH, Pravin M (Deena)
Vascular Associates of Westchester
19 Bradhurst Avenue
Hawthorne, NY 10532
914-593-1205
pmshah@pol.net

SHAH, Rasesh M (Gayatri)
Vascular & Transplant Specialists
397 Little Neck Rd, #100
Virginia Beach, VA 23452
757-470-5570
FAX: 757-961-4511
rshahmd@cox.net

SHAMMA, Asad R (Lina)
Clemenceau Medical Center
Sodeco Sq, Block B, 8th floor
Beirut, 0000
Lebanon
+961 3 750806
FAX: 772 3653103
shammu@sovein.net

SHANLEY, Charles J
Beaumont Hospital
3601 West 13 Mile Rd
Royal Oak, MI 48073
248-898-3321
FAX: 248-898-5418
cshanley@beaumont.edu

SHAPIRO, Ivan (Joan)
PO Box 325
Fort Fairfield, ME 04742
207-472-3612
FAX: 207-472-0000
ivanshapiro@banet.net

SHARF, Andrew (Maureen)
4176 Casey Avenue
Santa Ynez, CA 93460
805-688-2021
FAX: 805-693-9656
sharl@thegrid.net

SHARP, Frank (Susan)
Univ of Iowa Health Care
200 Hawkins Dr, 1508 JCP,
Surgery
Iowa City, IA 52242
319-356-1907
FAX: 319-384-6306
william-sharp@uiowa.edu

SHEEHAN, Maureen K
University of Texas San Antonio
7703 Floyd Curl Dr MC 7741
San Antonio, TX 78229-3900
210-567-5715
FAX: 210-567-1762
sheeham@uthscsa.edu

SHERRIN, Frederick W (Karen)
10801 E. Happy Valley Rd
Scottsdale, AZ 85255-8171
480-419-6431
rsherrin@mac.com

SHIN, David D (Morgan)
Houston Vein Specialists
6550 Fannin St, Ste 2407
Houston, TX 77030
713-790-0000
FAX: 713-790-1212
shin@hveins.com
SHIN, Susanna H
Washington Hospital Center/Georgetown
3800 Reservoir Rd
Washington, DC 20007
202-444-2253
FAX: 855-296-6828
susanna.h.shin@medstar.net

SHRIKHANDE, Gautam
(Allyson Shrikhande)
Columbia University Medical Center
161 Fort Washington Ave, 5th Floor
New York, NY 10032
646-300-0307
FAX: 212-342-3252
gs2459@columbia.edu

SHULL, Kenneth C (Marie)
Cornerstone Surgery
2337 Addison Blvd
High Point, NC 27262
336-802-2152
FAX: 336-802-2153
kshull@northstate.net

SIBLEY, William L, III (Ruth)
4424 Bellord St
Roanoke, VA 24018
540-345-3669
rfsib@verizon.net

SIDAWY, Anton N (Mary)
The George Washington University
2150 Pennsylvania Avenue, N.W.
Department of Surgery
Washington, DC 20037
202-741-3225
FAX: 202-741-3219
ansidawy@aol.com

SIEDERYS, Harry (Cathy)
9015 Kirkham Ct
Indianapolis, IN 46260
317-435-3865
FAX: 317-846-9576
hsiederys@aol.com

SIEFFERT, George F (Debra)
1500 East 2nd St, #206
Reno, NV 89502
775-789-7000
* SIBLEY, William L, III (Ruth)
Racine Medical Clinic
3807 Spring St
Racine, WI 53405
414-631-8206

SILVA, Michael B, Jr (Colleen)
University of TX Medical Branch, Department of Surgery
301 University Blvd, 0737
Galveston, TX 77555
mbsjr@mac.com

SILVA, Richard A
9715 Medical Center Dr, #105
Rockville, MD 20850
301-330-1000
FAX: 301-762-7811

SIMPSON, Thomas E (Martha)
420 Briarlea Rd
Winston-Salem, NC 27104-1829
336-765-9023
FAX: 336-765-9083
tsimp@bellsouth.net

SKUDDER, Paul A, Jr (Joanne)
90 Ter Heun Dr
Falmouth, MA 02540
508-457-9739
FAX: 508-457-9639
skudder@pol.net

SLADEN, Joseph G (Jill)
3204 W. 26th Ave
Vancouver, British Columbia V6L 1W1
Canada
604-731-4085
FAX: 604-731-4081
jsladen@interchange.ubc.ca

* SIMPSON, Thomas E (Martha)
420 Briarlea Rd
Winston-Salem, NC 27104-1829
336-765-9023
FAX: 336-765-9083
tsimp@bellsouth.net

SLADEN, Joseph G (Jill)
3204 W. 26th Ave
Vancouver, British Columbia V6L 1W1
Canada
604-731-4085
FAX: 604-731-4081
jsladen@interchange.ubc.ca

SMEDS, Matthew R
(Allyson Shrikhande)
St. Louis University
3635 Vista Ave @ Grand Blvd
St. Louis, MO 63110
314-387-8770
FAX: 314-387-8770
msmeds@slu.edu

#* SLADEN, Joseph G (Jill)
3204 W. 26th Ave
Vancouver, British Columbia V6L 1W1
Canada
604-731-4085
FAX: 604-731-4081
jsladen@interchange.ubc.ca

#† SMEDS, Matthew R
(Allyson Shrikhande)
St. Louis University
3635 Vista Ave @ Grand Blvd
St. Louis, MO 63110
314-387-8770
FAX: 314-387-8770
msmeds@slu.edu

* Senior † New Members # Candidate § Inactive
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

SMITH, Bruce M (Lisa Boyle)
Washington Hospital Center
110 Irving St NW, Vascular Surgery, NA1041
Washington, DC 20010-2975
202-877-8050
FAX: 202-877-8090
bruce.m.smith@medstar.net

* SMITH, David E
830 Quail Ridge Lane
Salinas, CA 93908-8945
408-358-8272
FAX: 831-484-8013

* SMITH, David F
6115 Via Madrid
Granite Bay, CA 95746

* SMITH, Robert B, III (Flo)
Sec Vasc Surgery, Emory University Hospital
Clin Bldg A, 1365 Clifton Rd NE
Atlanta, GA 30322
404-727-3573
FAX: 404-727-4716
robert.smith@emoryhealthcare.org

SMITH, Sumona
UTSW
5939 Harry Hines Boulevard
Dallas, TX 75235
770-367-0371
svs7423@aol.com

* SMULLENS, Stanton N
(Sara Kay)
211 So. 9th St, #305
Philadelphia, PA 19107-5506
smullen1@jeflin.tju.edu

* SNYDER, Ronald D (Donna)
37473 So. Jade Crest Drive
Tucson, AZ 85739-1426

SOLOMON, Andrew R
2510 Grand Boulevard, Suite 704
Kansas City, MO 64108
804-200-9595
arsolomon2001@aol.com

SONG, Tae K (Eileen Song)
Kaiser Permanente
25825 South Vermont Ave
Harbor City, CA 90807
562-290-7759
FAX: 310-917-4075
tae.k.song@kp.org

SOUNDARARAJAN, Krish
Temple University
3401 N. Broad St
Philadelphia, PA 19072
215-707-6143
K.Soundar@tuhs.temple.edu

* SPEIGLE, Ronald S (Gloria)
1555 East St, #220
Redding, CA 96001
530-246-1240
FAX: 530-247-8202
ronspeigle@starband.net

* SPIGELMAN, Auri (Deena)
3A Rosanes St
Jerusalem, 93113
Israel
972-2-567-1775
FAX: 972-2-563-0617
aurisp@netvision.net.il

SPIRIG, Andreas M
The Vascular Group
43 New Scotland Ave, #MC157
Albany, NY 12208
518-262-5640
FAX: 845-338-2081
spirigam@aol.com

SPROUSE, L. Richard, II (Chris)
University of Tennessee, Erlanger Hospital
979 Third St, E, Ste C-320
Chattanooga, TN 37403
423-267-0466
FAX: 423-778-2950
lrsprouse@gmail.com

ST. LOUIS, Myron
University of Connecticut
Hartford Hospital
80 Seymour St
Hartford, CT 06102
413-627-2742
stlouismyr@hotmail.com
*STABLE, Jerome G
PO Box 20107
Lehigh Valley, PA 18002-0107
610-258-7297
FAX: 610-258-2910

#STANZIALE, Stephen
503 Broad Stream Ln
Davidsonville, MD 21035-2049
stephen-stanziale@hotmail.com

STEED, David L (Linda)
2019 Hampstead Drive
Pittsburgh, PA 15233
412-802-3333
FAX: 412-291-1669
steddl@upmc.edu

STEFAN, Todd M (Julia)
135 JPM Rd
Lewisburg, PA 17837
570-523-3290
FAX: 570-524-5231
tstefan@evanhospital.com

#STEFFACHER, Robert C (Alma)
Intermountain Health
1486 East Skyline Drive Suite 201
South Ogden, UT 84405
801-479-4687
FAX: 801-479-9184
rcstep@gmail.com

STERN, John A (John Stern)
The Iowa Clinic
411 Laurel, Suitue 2380
Des Moines, IA 50314
515-288-8001
FAX: 515-288-5800
js stern@iow clinic.com

STERNBERGH, W. Charles, III (Tasha)
Ochsner Clinic Foundation
1514 Jefferson Highway
New Orleans, LA 70121
504-842-4053
FAX: 504-842-5017
csternbergh@ochsner.org

STEVENS, Scott L (Laurie)
University of TN Graduate School
of Medicine, Surgery
1924 Alcoa Highway, Box U-11
Knoxville, TN 37920-1511
865-305-9289
FAX: 865-305-8677
ssstevens@mc.utmck.edu

STONE, William M (Maree)
Mayo Clinic Arizona
3841 N. Jokake Dr
Scottsdale, AZ 85251
480-342-2868
FAX: 480-342-2866
stone.william@mayo.edu

STONER, Michael C (Claire)
East Carolina University
600 Moye Blvd, #7A 257
Greenville, NC 27834
252-744-4608
FAX: 252-744-3794
stonerm@ecu.edu

STOUGHTON, Julianne
(Wark N. Nawrocki)
Winchester Hospital
92 Montvale Ave, #3200
Stoneham, MA 02180
781-438-8117
FAX: 781-438-8116
jstoughton@partners.org

STOUT, Christopher
Sentara Norfolk General
600 Gresham Drive Suite 8620
Norfolk, VA 23507
757-622-2649
FAX: 757-961-6440
stouter40@yahoo.com

*SUFIAN, Shekeeb (Adanech)
13581 Heritage Dr
Seminole, FL 33776
727-393-0143
ssufian@tampabay.rr.com

SULKIN, Michael D (Linda)
Horizon Surgical Group
9210 Corporate Blvd, #100
Rockville, MD 20850
301-330-1000
FAX: 301-330-9108
msulkin@horizonsurgical.com
SULLIVAN, Theodore R, Jr (Brenda)
Surgical Care Specialists, Inc.
1245 Highland Ave, #600
Abington, PA 19001
215-887-3990
FAX: 215-887-1140
tsullivan@amh.org

SULLIVAN, Timothy M (Amy)
Minneapolis Heart Institute @ Abbott Nor
920 E. 28th St, Suite 300
Minneapolis, MN 55407
612-863-6800
timothy.sullivan@allina.com

SUMPIO, Bauer E (Catherine)
Yale Vascular Group
333 Cedar St, Surgery, BB 204
New Haven, CT 06520
203-785-6217
FAX: 203-785-7609
bauer.sumpio@yale.edu

#†SUNDARAM, Shankar M (Kamalini Nadarajah)
7102 Muirkirk Ln SW
Port Orchard, WA 98367-6404
972-548-7708
FAX: 972-542-7401
smdsvct@gmail.com

#†SUNDICK, Scott
The Mount Sinai Hospital, New York
5 E. 98th St, 4th Floor
New York, NY 10029
9173280331
ssundick@gmail.com

SVOBODA, Jerry J (Adelaide)
Unity Vascular Surgery
2655 Ridgeway Ave, Suite 240
Rochester, NY 14626
585-594-2000
FAX: 585-594-2223
elixir17@aol.com

SWANGARD, Robert J
Oregon Heart and Vascular
655 E. 11TH Ave, #2A
Eugene, OR 97401
541-484-6133
FAX: 541-484-5105
rjswangard@comcast.net

SWAYNGIM, Dowzell M, Jr (Marilyn)
Vasc. Surgeons of Sandusky, Inc.
703 Tyler St, Ste 251
Sandusky, OH 44870
419-625-0599
FAX: 419-625-3704

*SWEAT, R Earle
1111 Sonoma Ave, #320
Santa Rosa, CA 95405
707-544-1260
FAX: 707-544-5556
earles@soml.com

SWEENEY, Thomas F (Anne)
Connecticut Vascular Center
280 State St
North Haven, CT 06473-2132
203-288-2886
FAX: 203-288-2576
tomsweeney1@comcast.net

*SWENSON, Wayne M (Lois)
818 Avenue C West
Bismarck, ND 58501-2449
701-328-9574
FAX: 701-328-2164
lsimmons@mail.med.nodak.edu

SWERSKY, Robert B
1201 Northern Blvd
Manhasset, NY 11030
516-365-4616
FAX: 516-365-1759
rse777@aol.com

*SYDORAK, Gerald R (Oksanna)
Peninsular Surgical Specialists
1720 El Camino Real Ste 101
Burlingame, CA 94010-3211
650-455-2461
FAX: 650-652-0605
osydorak@sbcglobal.net

#†SYED, Fahad A
Texas Methodist Hospital
6550 Fannin, Ste 1901
Houston, TX 77030
713-441-0400
fasyed@tmhs.org

*TAFT, Peter M (Thayer)
9975 Alto Dr
La Mesa, CA 91941
619-528-5522
FAX: 619-528-3777
TAHERI, Syde A (Rose Ann)
100 High St
Buffalo, NY 14203
716-633-1838
FAX: 716-204-0063
staheri268@aol.com

TAMEO, Michael N
Commonwealth Surgical Associates/Tufts University
91 Montvale Ave, Suite 208
Stoneham, MA 02180
781-279-1123
FAX: 781-438-3034
revolutionmmt@hotmail.com

TAN, Tze-Woei
Boston University Medical Center
88 East Newton St, Collamore 5, Suite D5
Boston, MA 02118
401-626-9558
tzewoei@gmail.com

TANNENBAUM, Gary A (Mariel)
984 N. Broadway, #501
Yonkers, NY 10701
914-965-2606
FAX: 914-965-2880
gat20@concentric.net

TAWES, Roy L (JoyceAnn)
Desert Mountain-Desert Greens
39325 N. 107th Way
Scottsdale, AZ 85262
480-595-5136
FAX: 480-595-8309
tawes@cox.net

TAYAO, Manuel S (Josefina)
Veterans Adm Med Center
2200 Gage Blvd
Topeka, KS 66622
913-272-3111

TAYLOR, Nyali E (Anthony Shields)
Cooper University Hospital
3 Cooper Plaza, Suite 411
Camden, NJ 08103
215-906-3829
taylor-nyali@cooperhealth.edu

TAYYARAH, Majid
Kaiser Permanente
9961 Sierra Ave
Fontana, CA 92335
904-427-5856
majidfay@yahoo.com

TEODORESCU, Victoria J (Radu)
5 East 98th St, Box 1273
New York, NY 10029
212-241-6591
FAX: 212-534-4079
victoria.teodorescu@msnyuhealth.org

TESO, Desarom (Cheryl Ann)
Southwest Washington Medical Center
Thoracic & Vascular Surgery
505 NE 87th Ave, Suite 301
Vancouver, WA 98664
360-514-1854
FAX: 360-514-6063
dteso@swmedicalcenter.org

THOMAS, James H
3901 Rainbow Blvd, MS 1037
Kansas City, KS 66101
913-588-6101
FAX: 913-588-7540
jthomas@kumc.edu

THOMASSEN, J. Paul (Arlene)
4330 Dundee Rd
Reno, NV 89519-0964
775-825-3844
FAX: 775-825-3844
jptho@cox.net

THOMPSON, J. Keith
Hattiesburg Clinic
415 South 28th Ave
Hattiesburg, MS 39401
601-264-6000
FAX: 513-924-0866
keiththompson23@hotmail.com
TONNESSEN, Britt H (Brian Sullivan)
Roper Heart and Vascular Center
316 Calhoun St
Charleston, SC 29401
843-720-5665
FAX: 843-727-3370
britt.tonnessen@rsfh.com

TORRANCE, Bruce S
LSUHSC–New Orleans Department of Vascular Surgery
1542 Tulane Ave, Department of Surgery 7th Floor
New Orleans, LA 70112
504-568-4750
FAX: 504-568-4730
btorra@lsuhsc.edu

TRAN, Victor Q
Maimonides Medical Center
903 49th St
Brooklyn, NY 11219
646-206-8596
vtran3000@gmail.com

TRAYNOR, Michael D (Mary Beth)
Sanford Clinic
737 Broadway
Fargo, ND 58123
701-234-2251
FAX: 701-234-2050
michaeltraynor@sanfordhealth.org

* TREIMAN, Richard L (Bette)
8631 W. Third St, #615E
Los Angeles, CA 90048
310-652-8132
FAX: 310-659-3815

* UNGUEZ, Francisco T (Eileen)
608 E. Ahwahnee Avenue
Fresno, CA 93720-2179

UPCHURCH, Gilbert R, Jr (Nancy)
600 Rainier Rd
Charlottesville, VA 22903
434-243-6333
FAX: 434-243-9941
grubn@virginia.edu

URLAUB, Bernard J
6699 Alvarado Rd, #2210
San Diego, CA 92120
619-287-6003
FAX: 619-287-6038
burlaubnd@yahoo.com

#†VALLABHANENI, Raghuveer (Adrianna)
University of North Carolina
Chapel Hill
3024 Burnett-Womack Building
CB #7212
Chapel Hill, NC 27599-7212
919-966-3391
FAX: 919-966-2898
Raghuveer_Vallabhaneni@med.unc.edu

VAN SPEYBROECK, John A (Nancy)
Surgical Associates, Inc.
2321 Harrison Avenue
Eureka, CA 95501-3216
707-443-2248
FAX: 707-443-4847

†VANDY, Frank C (Trudy)
8134 Cypress Circle
Dexter, MI 48130
734-232-5035
frankv@umich.edu

* VANNIX, Robert S
1560 E. Chevy Chase
Glendale, CA 91206

VASQUEZ, Julio C
Portneuf Medical Center
1400 Kelly Ct
Pocatello, ID 83201
208-239-2580
FAX: 208-239-2589
juvasquez@yahoo.com

VELAZQUEZ, Omaida C (Romulo Cuy)
University Miami/Jackson Memorial Hospital, Department Surgery
1161 NW 12th Ave, East Tower 3016
Miami, FL 33136
305-585-5284
FAX: 305-585-8569
ovelazquez@med.miami.edu
VERMILION, Blair D (Kay)
Ohio State University
456 W. 10th Avenue
3018 Cramblett Medical Clinic
Columbus, OH 43210
614-293-8536
FAX: 614-293-8902
blair.vermilion@osumc.edu

VIETA, Paul A, Jr
(Sarah Grummer)
University of Maryland
5969 East Broad St, #303
Columbus, OH 43213
614-234-0444
FAX: 614-234-0456
gilford.vincent@yahoo.com

VITALE, Gerard F (Jeanne)
North Shore University
10 Medical Plaza
Glen Cove, NY 11542
516-759-5559
FAX: 516-759-1671
gfvitalemd@aol.com

VO, Danny H
University of Florida-Jacksonville
635 West 8th St
Jacksonville, FL 32209
773 960 3386
vodanny@yahoo.com

VOGEL, Todd R
UMDNJ-Robert Johnson Medical School
1 Robert Wood Johnson Pl, CN-19
New Brunswick, NJ 08903-0019
732-235-7816
FAX: 732-235-6042
vogelto@umdnj.edu

WAGMEISTER, Robert (Lynn)
2001 Santa Monica Blvd, Ste 690W
Santa Monica, CA 90404
310-828-5626
FAX: 310-828-2826
rwagmd@aol.com

WAGNER, Willis H (Diane)
8631 W. Third St, #615E
Los Angeles, CA 90048
310-652-8132
FAX: 310-659-3815
willis.wagner@cshs.org

WALL, C. Allen (Doris)
2001 Union St, #300
San Francisco, CA 94123
415-661-2012
FAX: 415-661-8423
cwall@sbcglobal.net

WALL, Mark H
4841 Shavano Dr
Broomfield, CO 80023-8314

WALLNER, Manfred A
508 South Hampton
Anaheim, CA 92804
714-828-4580

WALSH, James J (Kathleen)
Cardiac Surgery Associates
2600 Warrenville Rd, #280
Downers Grove, IL 60515
630-324-7927
FAX: 630-659-0851
jwalsh710@sbcglobal.net

WALSH, John J, Jr (Jacinta)
2820 Napoleon Ave, Ste 640
New Orleans, LA 70115-8207
504-454-2790
FAX: 504-455-4669

WALSKY, Robert S (Norma)
452 Old Hook Rd, #302
Emerson, NJ 07630-1381
201-967-1105
FAX: 201-967-1272

WANG, Grace J
Hospital of University of Pennsylvania
3400 Spruce St, 4 Maloney
Philadelphia, PA 19104
215-738-0107
FAX: 215-614-0463
Grace.Wang@uphs.upenn.edu

WANG, Jeffrey Y
111 Prettyman Drive
Rockville, MD 20850
yetchy@hotmail.com
WANG, Xiujie (Dan Woo)
Guthrie Clinic
One Guthrie Sq
Sayre, PA 18840
570-882-2386
FAX: 570-882-2338
xiujie_w@yahoo.com

WARREN, Thomas R, II
Texas Tech. University Health Sciences Center
2401 S. 31st St
Temple, TX 76508
254-724-2232
FAX: 254-724-6317

WASSERMAN, Dean H (Regina)
Vein Treatment Center of New Jersey
One W. Ridgewood Ave
Paramus, NJ 07652
201-612-1750
FAX: 201-612-1760
dwasserman@veintreatmentcenternj.com

WATERFORD, R. Randolph (Anita Parekh Waterford, DO)
Pacific Rim Cardiovascular, Inc.
PO Box 923
Wailuku, HI 96793
808-268-5789
waterfordcevs@aol.com

WATERS, Harris J (Elizabeth)
450 Welch St
Silverton, OR 97381-1934
503-873-5310
FAX: 503-873-5315

* WATSON, Milton R (Shirley)
4395 Blanton Heights Rd
Eugene, OR 97405
541-484-9496
miltshi-168@comcast.net

WEAVER, Fred A (Rebecca)
University of So. Calif, Surgery
1520 San Pablo St, #4300
Los Angeles, CA 90033
323-442-6835
FAX: 323-442-5735
fweaver@surgery.usc.edu

WEBB, Ronald L (Nanci)
East Bay Vascular Medical Group
365 Hawthorne Ave, #103
Oakland, CA 94609
510-832-6131
FAX: 510-832-6169
rwebb3672@aol.com

* WEBB, Roscoe C (Lydia)
177 North Saltair Ave
Los Angeles, CA 90049
310-788-8363
rwebb@verizon.net

WEBER, Natalie S
4870 Forsyth Rd
Macon, GA 31210
484-951-0239
natalieweger@yahoo.com

WEINBERGER, Jeffrey
Cleveland Clinic
9500 Euclid Avenue
Cleveland, OH 44195
216-899-1133
weinbej2@ccf.org

WEINGARTEN, Michael S (Carol)
1212 Cherrman Lane
Penn Valley, PA 19072
215-762-7008
FAX: 215-762-8699
michael.weingarten@drexelmed.edu

WEINSTEIN, Eric S (Judith Hoechst)
950 E. Harvard Ave, #550
Denver, CO 80210-7000
303-788-6606
FAX: 303-788-6622

WEINSTEIN, Saul F
6654 Beatrix Dr
Jacksonville, FL 32226-3344
904-251-3198
saul@bigdam.net
WEISS, Victor J (Nicole)
Wisconsin Heart and Vascular Institute
2601 W. Beltline Hwy
Madison, WI 53713
608-260-2100
FAX: 608-260-2101
vjweiss19@gmail.com

WELLING, Richard E (Darlene)
Good Samaritan Hospital
375 Dixmyth Ave, Med Ed, 3rd Floor Tower
Cincinnati, OH 45220
513-872-3220
FAX: 513-221-5865
richard_wellingmd@trihealth.com

WELSH, David B (Ahlene)
1175 No. College Ave
Claremont, CA 91711
909-427-3909
FAX: 909-427-7602
welshes@worldnet.att.net

WENGERTER, Kurt R (Virginia)
375 Engle St
Englewood, NJ 07631
201-894-0400
FAX: 201-894-1022

WENGROVITZ, Mark
Peripheral Vascular Associates
4330 Medical Drive, Ste #120
San Antonio, TX 78229
210-614-7414
FAX: 210-616-0509
mwengz@gvtc.com

WEST, Weldon W
6333 Pacific Ave
Stockton, CA 95207-3713

WHITE, Julie G (Robert)
Pen Bay Surgery
4 Glen Cove Dr, #103
Rockport, ME 04856
207-593-5737
gwwhitemd@yahoo.com

WHITE, Rodney A
Harbor-UCLA Medical Center
1000 W. Carson St
Torrance, CA 90502-2059
310-222-2764
FAX: 310-787-1889
rawhite@ucla.edu

WHITTEN, James I (Catherine)
11751 Hunters Park Ct
Livonia, MI 48150-5051
248-474-2700
FAX: 248-474-8587

WHITTEN, Matthew G (Bireen)
University of Washington School of Medicine
Dept of Surgery, Box 356410
Seattle, WA 98195
206-527-6145
FAX: 801-581-6612
matthew.whitten@gmail.com

WILENSKY, Joshua A (Lisa)
UAMS in Little Rock
Division of Vascular Surgery,
Slot 520-2
Little Rock, AR 72205
504-451-7765
jawilensky@uams.edu

WILLIAMS, James B (Susan)
2420 West Nebraska Avenue
Peoria, IL 61604
309-680-5000
FAX: 309-680-1002
jwilliams@cvendo.com

WILLIAMS, Larry R (Sarah)
1201 7th Avenue North
St. Petersburg, FL 33705
727-894-4738
FAX: 727-823-6710
drwilliams_630@hotmail.com

WILLIAMS, Philip C (Bonnie)
1 Elizabeth Pl, #10A
Dayton, OH 45417-3445
937-228-4126
FAX: 937-228-0247

* Senior † New Members # Candidate § Inactive
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

#† WILLIAMS, Timothy K (Donna)
Johns Hopkins Hospital
15 S. High St
Baltimore, MD 21202
302-562-1431
doctim77@gmail.com

WILLIS, Alan
Surgical Associates of Marshall County
333 Wall St
Albertville, AL 35951
205-913-6261
alanwillis23@hotmail.com

WINKLER, Gabor A (Bonnie)
Holy Redeemer Surgical Associates at Meadowbrook
1650 Huntingdon Pike, Ste 205
Meadowbrook, PA 19046
215-938-3145
winklerg@mlhs.org

* WITTENSTEIN, George J (Christel)
4004 Cuervo Ave
Santa Barbara, CA 93110
805-682-2990
FAX: 805-687-4121

WITTGEN, Catherine M (Kevin Anderson)
St. Louis University Hospital
3635 Vista at Grand, Box 15250
St. Louis, MO 63110-0250
314-577-8310
FAX: 314-577-8635
wittgenc@slu.edu

WIXON, Christopher L (Michelle)
4750 Waters Ave, Ste 500
Savannah, GA 31404
912-350-5942
FAX: 912-350-5942
cwixon@savannahvascular.com

WOLODIGER, Fred A
375 Engle St
Englewood, NJ 07631
201-894-0400
FAX: 201-894-1022

* WONG, John B (Alice)
21 Gateview Dr
Fallbrook, CA 92028
619-728-4936

WOO, Edward Y
Hospital of the U of Penn
3400 Spruce St
Philadelphia, PA 19104
215-662-7836
FAX: 215-614-0463
wooe@uphs.upenn.edu

* WOO-MING, Michael O (Prudence)
7715 37th St, #C-102
Vero Beach, FL 32960-4873
407-567-1006
FAX: 407-567-1007

WOODSON, Jonathan (Sherril)
Boston University Medical Center Hospital
88 East Newton St
Boston, MA 02118
617-638-8488
FAX: 617-638-8469
jonathan.woodson@bmc.org

WOODY, Jonathan D
Athens Vascular Specialists
195 King Avenue
Athens, GA 30606
706-549-8306
FAX: 706-549-8351
woody@athensvascular.com

WOOSTER, Douglas L (Pauline)
1202-1243 Islington Ave
Toronto, Ontario M8X 1Y9
Canada
416-763-3797
FAX: 416-763-1204
wooster@sympatico.ca

WRIGHT, Albert M
One Plaza St
Brooklyn, NY 11217
718-638-1971
FAX: 718-638-1972
almwright@aol.com

#† WRIGHT, Mark P
University of Arkansas
1415 Mesquite Drive
Little Rock, AR 72211
501-258-4060
wrightmarkp@uams.edu
WULKAN, David L
Surgical Assoc of Palm Beach County
670 Glades Rd, #300
Boca Raton, FL 33431
561-395-2626
FAX: 561-395-7026
wulkd@aol.com

WYBLE, Charles W
Vascular Surgical Associates
61 Whitcher St, #2100
Marietta, GA 30060-1142
770-423-0595
twyble@earthlink.net

XENOPHONTOS, Xenophon P (Androula)
Long Island Vascular & Surgical, P.C.
585 Stewart Ave, Ste LL-16
New York, NY 11530
516-227-2721
FAX: 516-227-0564
xxhill@optonline.net

YAVORSKI, Chester C (Sandra)
Surgery Specialists of Wyoming Valley
200 South River St
Plains, PA 18705
570-821-1100
FAX: 570-821-1108
chetvas@epix.net

* YELLIN, Albert E (Elissa)
59-415 Kawowo Rd
Haleiwa, HI 96712
aeyellin@hawaii.rr.com

YOKOYAMA, Taro (Rita)
Pacific Cardiothoracic Surgery Group
2200 W. 3rd St, #300
Los Angeles, CA 90057-1904
213-368-2200
FAX: 213-368-7739
dryokoyama@taroyokoyama.com

YONEHIRO, Layne R (Susan)
Baptist Hospital
1717 NE St, Ste 533
Pensacola, FL 32501-6365
850-429-0102
FAX: 850-429-0803
layne.yonehiro@gmail.com

YORK, John W (Michelle)
Institute for Vascular Health
200 Patewood Drive, Suite C300
Greenville, SC 29615
864-455-7886
FAX: 864-455-1320
jyork@ghs.org

YOUKEY, Jerry R (Sharon)
Greenville Hospital System
701 Grove Rd
Greenville, SC 29605
864-455-7880
FAX: 864-455-8439
jyoukey@ghs.org

YOUNES, Houssam K.
6560 Fannin St, Ste 1401
Houston, TX 77030
713-441-5200
hkyounes@tmhs.org

ZADA, Fatih Salih (Joanne)
PO Box 1026
Palos Verdes Estates, CA 90274-1026
310-639-3836
FAX: 310-378-4558
fszjkf@msn.com

* ZAHN, Richard L (Jeanella)
1315 So. Pleasant View Rd
Post Falls, ID 83854-9496
714-524-5255

ZAHRADNIK, Vladimir
Cleveland Clinic
9500 Euclid Ave
Cleveland, OH 44195
205-441-9333
vzahradnik@gmail.com

* ZATLIN, Gerald (Nadine)
1353 E. Devonshire Ave
Hemet, CA 92544-8628

#†ZAYED, Mohamed
Stanford University Medical Center
300 Pasteur Drive, Suite H3600
Stanford, CA 95305
919-491-1345
mzayed@stanford.edu

* Senior † New Members # Candidate § Inactive
ZELENOCK, Gerald B (Mary Kay)
University of Toledo Medical Center
3065 Arlington Ave, Mailstop 1085
Toledo, OH 43614
419-383-3759
FAX: 419-383-6636
gzelenock@hotmail.com

ZINGARELLI, William J (Amy)
University of Florida
10324 SW 48th Place
Gainesville, FL 32608-7177
352-376-1611
FAX: 352-376-1611
zing06@bellsouth.net

ZHOU, Wei
Stanford University School of Medicine
VAPAHCS/Surgical Service (112)
3801 Miranda Avenue
Palo Alto, CA 94304
713-798-8412
FAX: 713-798-8632
weizhou70@hotmail.com
ALABAMA

Albertville
Willis, Alan

Birmingham
Drummond, Michael A
Gaffud, Michael J
Horn, Jeffrey S
Jordan, William D, Jr
McCord, R. Scott
Passman, Marc A

Florence
Pons, Peter J

ARIZONA

Chandler
Bhende, Siddharth K

Mesa
Chalk, James E
Malone, James M

Phoenix
Buck, Bruce A
Caparrelli, David J
D’Souza, Sean B
Halpern, Vivienne J
Money, Samuel R
Pihlak, Howard C
Puggioni, Alessandra
Sandridge, Layne

Rio Verde
Hutchison, David E

Scottsdale
Roland, Norman B
Sherrin, Frederick W
Stone, William M
Tawes, Roy L

Sun City
Patri, Ramesh C

Tempe
O’Connor, Arthur J, III

Tucson
Berman, Scott S
Hunter, Glenn C
Mendoza, Bernardo
Mills, Joseph L, Sr
Schilling, Jolyon D
Snyder, Ronald D

ARKANSAS

Lake Village
Johnson, John M

Little Rock
Meka, Madhavi
Wilensky, Joshua A

CALIFORNIA

Agoura
Barker, Wiley F

Anaheim
Daskalakis, Michael K
Wallner, Manfred A

Anderson
Cook, Charles H
Sandrock, William E

Angwin
Mullin, Timothy J

Atherton
Lee, George

Auburn
List, John W
<table>
<thead>
<tr>
<th>City</th>
<th>Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beverly Hills</td>
<td>Foran, Robert F, Roedling, Herbert A</td>
</tr>
<tr>
<td>Burlingame</td>
<td>Sydorak, Gerald R</td>
</tr>
<tr>
<td>Carlsbad</td>
<td>Pho, Da Ba</td>
</tr>
<tr>
<td>Chino Hills</td>
<td>Murray, James D</td>
</tr>
<tr>
<td>Claremont</td>
<td>Bonilla, Kenneth B, Mohan, Ayyampalayam R, Welsh, David B</td>
</tr>
<tr>
<td>Daly City</td>
<td>Crew, John R</td>
</tr>
<tr>
<td>Dana Point</td>
<td>Cannon, Jack A</td>
</tr>
<tr>
<td>Davis</td>
<td>Park, Thomas C</td>
</tr>
<tr>
<td>Deer Park</td>
<td>Tetz, Emmett L</td>
</tr>
<tr>
<td>Desert Hot Springs</td>
<td>Jay, Jack B</td>
</tr>
<tr>
<td>Downey</td>
<td>Minkes, Mark</td>
</tr>
<tr>
<td>El Cajon</td>
<td>Behrend, A. James</td>
</tr>
<tr>
<td>Emeryville</td>
<td>Lee, Chong A</td>
</tr>
<tr>
<td>Encino</td>
<td>Mindlin, Allen I</td>
</tr>
<tr>
<td>Eureka</td>
<td>Palmer, Michael A, Van Speybroeck, John A</td>
</tr>
<tr>
<td>Fallbrook</td>
<td>Breslau, Roger C, Wong, John B</td>
</tr>
<tr>
<td>Fontana</td>
<td>Tayyarah, Majid</td>
</tr>
<tr>
<td>Fountain Valley</td>
<td>Duy, A. Nguyen D</td>
</tr>
<tr>
<td>Fresno</td>
<td>Unguez, Francisco T</td>
</tr>
<tr>
<td>Glendale</td>
<td>Acosta, Ignacio, Jones, S. Austin, Pereyra, Robert, Vannix, Robert S</td>
</tr>
<tr>
<td>Glendora</td>
<td>Elshire, H. Donel</td>
</tr>
<tr>
<td>Granite Bay</td>
<td>Smith, David F</td>
</tr>
<tr>
<td>Hanford</td>
<td>Eustermann, James N, Latif, Sheikh A</td>
</tr>
<tr>
<td>Harbor City</td>
<td>Saroyan, Richard M, Song, Tae K</td>
</tr>
<tr>
<td>Hemet</td>
<td>Zatlin, Gerald</td>
</tr>
<tr>
<td>Hillsborough</td>
<td>Beare, John P</td>
</tr>
<tr>
<td>Indian Wells</td>
<td>McCarter, Michael</td>
</tr>
<tr>
<td>Inglewood</td>
<td>Nutting, Robert O</td>
</tr>
<tr>
<td>Irvine</td>
<td>Fujitani, Roy M</td>
</tr>
<tr>
<td>La Canada</td>
<td>Kronson, Jeffrey W</td>
</tr>
<tr>
<td>La Jolla</td>
<td>Bergan, John J</td>
</tr>
<tr>
<td>La Mesa</td>
<td>Muscant, Michael E, Tafi, Peter M</td>
</tr>
<tr>
<td>La Quinta</td>
<td>Calvin, James W</td>
</tr>
<tr>
<td>Laguna Niguel</td>
<td>Hill, M. Robert, Jr, Puckett, John W</td>
</tr>
<tr>
<td>Laguna Woods</td>
<td>Samson, Ian D</td>
</tr>
</tbody>
</table>
Lancaster
Glazer, Sidney M
Petrik, Pavel V
Long Beach
Rosental, John J
Los Alamitos
Nemhauser, Gary M
Los Angeles
Ahn, Samuel S
Austin, Reed
Baker, J. Dennis
Barkhordarian, Stamat
Carroll, Robert M
Chong, Terry
Cohen, J. Louis
Cohen, William B
Dorazio, Richard A
Ezett, Faik
Farley, Steve M
Fitzgibbon, Terrence J
Gelabert, Hugh A
Glasser, Bernard D
Jimenez, Juan C
Lawrence, Peter F
Levin, Phillip M
Lew, Wesley
Li, Edward N
Mannis, Ben G
Nankin, Pablo
Plested, William G, III
Pollak, Erich W
Quinones-Baldrich, William J
Rowe, Vincent L
Treiman, Richard L
Wagner, Willis H
Weaver, Fred A
Webb, Roscoe C
Yokoyama, Taro
Malibu
Hodosh, Stuart
Manhattan Beach
Herzberg, Robert M
Marysville
Macbeth, Gordon A
Mc Kinleyville
Husband, George G
Mill Valley
Couris, George D
Mission Viejo
Kennedy, Michael T
Monrovia
Delman, Robert
Monterey
Hyde, Jeffrey H
Napa
Angotti, Donald M
Borge, James D
Loftus, John P
Raymond, Leland R
Newport Beach
Lindsay, Stephen F
Robinson, Hurley
Northridge
Jabour, Adel F
Oakland
Obnial, Gonzalo
Webb, Ronald L
Oceanside
Deemer, Andrew R
Orange
Charney, Kim J
Flanigan, D. Preston
Oxnard
Katz, David J
Lee, Stephen E
Palm Desert
Reeves, John W
Palm Springs
Doiron, John C, Jr
Palo Alto
Ginsberg, Robert L
Greenstone, Seymour M
Zhou, Wei
Palos Verdes Estates
Zada, Fatih Salih
Pasadena
Gaspar, Donald J
Johnston, Paul W
Katz, Steven G
Kohl, Roy D
<table>
<thead>
<tr>
<th>Location</th>
<th>Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piedmont</td>
<td>Davis, Robert C</td>
</tr>
<tr>
<td>Portola Valley</td>
<td>Fogarty, Thomas J</td>
</tr>
<tr>
<td>Rancho Palos Verdes</td>
<td>Donayre, Carlos E</td>
</tr>
<tr>
<td></td>
<td>Guest, Richard A</td>
</tr>
<tr>
<td></td>
<td>Hill, Carl W</td>
</tr>
<tr>
<td></td>
<td>Keyhani, Arash</td>
</tr>
<tr>
<td></td>
<td>LoGiudice, Philip</td>
</tr>
<tr>
<td>Redding</td>
<td>Malik, Riaz A</td>
</tr>
<tr>
<td></td>
<td>Speigle, Ronald S</td>
</tr>
<tr>
<td>Redlands</td>
<td>Mohr, Lester L</td>
</tr>
<tr>
<td></td>
<td>Rau, Richard M</td>
</tr>
<tr>
<td>Roseville</td>
<td>Haugen, David L</td>
</tr>
<tr>
<td>Sacramento</td>
<td>Blaisdell, F. William</td>
</tr>
<tr>
<td></td>
<td>Dawson, David L</td>
</tr>
<tr>
<td></td>
<td>Lee, Eugene S</td>
</tr>
<tr>
<td>Salinas</td>
<td>Smith, David E</td>
</tr>
<tr>
<td>San Clemente</td>
<td>McVeigh, Hugh</td>
</tr>
<tr>
<td>San Diego</td>
<td>Casey, Kevin M</td>
</tr>
<tr>
<td></td>
<td>Devlin, Joseph B</td>
</tr>
<tr>
<td></td>
<td>Eastman, A. Brent</td>
</tr>
<tr>
<td></td>
<td>Hye, Robert J</td>
</tr>
<tr>
<td></td>
<td>McGinn, Robert F</td>
</tr>
<tr>
<td></td>
<td>Urlaub, Bernard J</td>
</tr>
<tr>
<td>San Francisco</td>
<td>Denbo, Howard E</td>
</tr>
<tr>
<td></td>
<td>Eichler, Charles M</td>
</tr>
<tr>
<td></td>
<td>Levin, Sheldon M</td>
</tr>
<tr>
<td></td>
<td>Murray, Robert E</td>
</tr>
<tr>
<td></td>
<td>Wall, C. Allen</td>
</tr>
<tr>
<td>San Leandro</td>
<td>Gingery, Robert O</td>
</tr>
<tr>
<td>San Mateo</td>
<td>Harris, Edmund J, Sr</td>
</tr>
<tr>
<td>Santa Barbara</td>
<td>Cisek, Paul L</td>
</tr>
<tr>
<td>Santa Clara</td>
<td>Faruqi, Rishad M</td>
</tr>
<tr>
<td></td>
<td>Porter, Howard R</td>
</tr>
<tr>
<td>Santa Maria</td>
<td>Campbell, Robert W</td>
</tr>
<tr>
<td></td>
<td>Moss, Robert R</td>
</tr>
<tr>
<td>Santa Monica</td>
<td>Wagmeister, Robert</td>
</tr>
<tr>
<td>Santa Rosa</td>
<td>Richardson, Robert E</td>
</tr>
<tr>
<td></td>
<td>Sweat, R. Earle</td>
</tr>
<tr>
<td>Santa Ynez</td>
<td>Sharf, Andrew</td>
</tr>
<tr>
<td>Santa Ysabel</td>
<td>Dunn, Elwin M</td>
</tr>
<tr>
<td>Saratoga</td>
<td>Okada, Floyd</td>
</tr>
<tr>
<td>Seal Beach</td>
<td>Gaspar, Max R</td>
</tr>
<tr>
<td>Sebastopol</td>
<td>Delgado, Roger R, Jr</td>
</tr>
<tr>
<td>Sherman Oaks</td>
<td>O'Connell, Jessica B</td>
</tr>
<tr>
<td>So Pasadena</td>
<td>Countryman, L. Kenneth</td>
</tr>
<tr>
<td>Stanford</td>
<td>Lee, Jason T</td>
</tr>
<tr>
<td></td>
<td>Mell, Matthew W</td>
</tr>
<tr>
<td></td>
<td>Miller, D. Craig</td>
</tr>
<tr>
<td></td>
<td>Olcott, Cornelius, IV</td>
</tr>
<tr>
<td></td>
<td>Zayed, Mohamed</td>
</tr>
<tr>
<td>Stockton</td>
<td>Salter, Robert K</td>
</tr>
<tr>
<td></td>
<td>West, Weldon W</td>
</tr>
<tr>
<td>Tarzana</td>
<td>Bahuth, Joseph J</td>
</tr>
<tr>
<td></td>
<td>Rafidi, Fuad F</td>
</tr>
<tr>
<td>Thousand Oaks</td>
<td>Grigorian, Vrej</td>
</tr>
<tr>
<td></td>
<td>McCrane, Dolph B</td>
</tr>
</tbody>
</table>
SCVS • 40TH ANNUAL SYMPOSIUM ON VASCULAR SURGERY

Torrance
Adoumie, Riad
Emery, Clyde K, Jr
Grollman, Julius H
Hoffman, Warren F
Jazaeri, Omid
Klein, Stanley R
Lee, Benny Chen-Chu
McNamara, John P
White, Rodney A

Trinidad
Holmes, Scott

Vacaville
Naficy, Sepehre

Valencia
Panasci, Anthony

Valley Center
Gibson, L. Dean

Ventura
Dart, Charles H, Jr

Visalia
Harris, Clifton G, III

Walnut Creek
Connett, Mahlon C

Westlake Village
Khobreh, Michael T
Raphael, Hugh A

Whittier
Khan, Aziz A
Klieman, Charles H

Woodland
Erba, Dominic M

COLORADO
Breckenridge
Khanna, Trilok S

Broomfield
Wall, Mark H

Cherry Hills Village
Brown, William H

Colorado Springs
Crepps, J. Thomas, Jr

Denver
Kutner, Fredric
Nowak, Lisa R
Weinstein, Eric S

Greenwood Village
Roos, David B

Longmont
Leonard, John D

Westminster
Long, David M

Wheat Ridge
Olson, Dennis H

CONNECTICUT

Cheshire
Quigley, William

Danbury
Dietzek, Alan M
Hsu, Richard C

Farmington
Shah, Parth S
Allmendinger, Philip D
Menzaian, James O

Greenwich
Scarpa, Francis J

Hamden
Sergi, Michael A

Hartford
Ruby, Steven T
St. Louis, Myron

New Haven
Freiburg, Carter B

New Haven
Dardik, Alan
Indes, Jeffrey E
Madabhushi, Aditi
Sumpio, Bauer E

Newtown
Margules, Richard M

North Haven
Sweeney, Thomas F
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

<table>
<thead>
<tr>
<th>Location</th>
<th>Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Greenwich</td>
<td>Bauer, Stephen M</td>
<td>Old Greenwich</td>
</tr>
<tr>
<td>Orange</td>
<td>Montegut, Ferdinand J</td>
<td>Orange</td>
</tr>
<tr>
<td>Stamford</td>
<td>Browning, Louis D, Jr</td>
<td>Stamford</td>
</tr>
<tr>
<td>West Hartford</td>
<td>Divinagracia, Thomas V</td>
<td>West Hartford</td>
</tr>
<tr>
<td>Westport</td>
<td>Hughes, William F</td>
<td>Westport</td>
</tr>
<tr>
<td>Woodbridge</td>
<td>Dineen, Joseph P</td>
<td>Woodbridge</td>
</tr>
<tr>
<td>Delaware</td>
<td>Katz, Mayer M</td>
<td>Lewes</td>
</tr>
<tr>
<td>Newark</td>
<td>Ierardi, Ralph P</td>
<td>Newark</td>
</tr>
<tr>
<td>District of Columbia</td>
<td>Kreisman, Peter</td>
<td>Washington</td>
</tr>
<tr>
<td>Washington</td>
<td>Akbari, Cameron M</td>
<td>Washington</td>
</tr>
<tr>
<td>Beavers</td>
<td>Frederick P</td>
<td>Aventura</td>
</tr>
<tr>
<td>Bowman</td>
<td>Jonathan N</td>
<td>Boca Raton</td>
</tr>
<tr>
<td>Momin</td>
<td>Takki A</td>
<td>Boca Raton</td>
</tr>
<tr>
<td>Neville</td>
<td>Richard F</td>
<td>Boca Raton</td>
</tr>
<tr>
<td>Park</td>
<td>Brian D</td>
<td>Boca Raton</td>
</tr>
<tr>
<td>Ricotta</td>
<td>John J</td>
<td>Boca Raton</td>
</tr>
<tr>
<td>Shun</td>
<td>Susanna H</td>
<td>Boca Raton</td>
</tr>
<tr>
<td>Sidaway</td>
<td>Anton N</td>
<td>Boca Raton</td>
</tr>
<tr>
<td>Smith</td>
<td>Bruce M</td>
<td>Boca Raton</td>
</tr>
<tr>
<td>FLORIDA</td>
<td>Altschuler, Mark</td>
<td>Ft. Myers</td>
</tr>
<tr>
<td>MIAMI</td>
<td>Katzman, Howard E</td>
<td>Naples</td>
</tr>
<tr>
<td>Oldenburg</td>
<td>Alfred D, Jr</td>
<td>Naples</td>
</tr>
<tr>
<td>Vo</td>
<td>Danny H</td>
<td>Naples</td>
</tr>
<tr>
<td>Weinstein</td>
<td>Saul F</td>
<td>Naples</td>
</tr>
<tr>
<td>Jupiter</td>
<td>Ernst, Calvin B</td>
<td>Miami</td>
</tr>
<tr>
<td>Kleiman</td>
<td>M. Leonard</td>
<td>Miami</td>
</tr>
<tr>
<td>Robbins</td>
<td>Lester E</td>
<td>Miami</td>
</tr>
<tr>
<td>Melbourne</td>
<td>Ramadan, Fuad M</td>
<td>Miami</td>
</tr>
<tr>
<td>Naples</td>
<td>Blumenberg, Robert M</td>
<td>Naples</td>
</tr>
<tr>
<td>DeFeo</td>
<td>Anthony P</td>
<td>Naples</td>
</tr>
<tr>
<td>Mullick</td>
<td>Subhas C</td>
<td>Naples</td>
</tr>
<tr>
<td>Rajasinghe</td>
<td>Hiranya A</td>
<td>Naples</td>
</tr>
<tr>
<td>New Port Richey</td>
<td>Ayward, Theodore D</td>
<td>New Port Richey</td>
</tr>
<tr>
<td>Kraus</td>
<td>Matthew A</td>
<td>New Port Richey</td>
</tr>
<tr>
<td>Orange Park</td>
<td>Rifkin, Kerry V</td>
<td>Orlando</td>
</tr>
<tr>
<td>Orlando</td>
<td>Friedell, Mark L</td>
<td>Orlando</td>
</tr>
<tr>
<td>Martin</td>
<td>Samuel P</td>
<td>Orlando</td>
</tr>
</tbody>
</table>
Palm Beach Gardens
 Cires, Giancarlo
Pensacola
 Kafie, Fernando E
 Yonehira, Layne R
Ponte Vedra Beach
 Dulawa, Leopoldo
Port St. Lucie
 Meyer, William H
Rockledge
 Agrama, Hani M
Sarasota
 Marks, Charles
 Meade, James W
 Samson, Russell H
Seminole
 Sufian, Shekeeb
St. Petersburg
 Blackshear, William M, Jr
 Clarke, John M
 Imparato, Anthony M
 Williams, Larry R
Tamarac
 Avila, Mario H
Tampa
 Austin, Joseph P
 Hodgkiss-Harlow, Kelley D
 Kerr, Thomas M
Titusville
 Cerrato, Walter A
Vero Beach
 Woo-Ming, Michael O
West Palm Beach
 Lynn, Richard A
Weston
 King, Terry A
Winter Park
 Schreiber, Stephen, III

Atlanta
 Bik, Andras
 Kasirajan, Karthikeshwar
 Lewinstein, Charles J
 Ricotta, Joseph J, II
 Riesenberg, Paul J
 Smith, Robert B, III
Augusta
 Griffin, Louie H, Jr
Columbus
 Lawhorne, Thomas W, Jr
 McGee, Theodore J
Dalton
 Hamilton, Ian N, Jr
Decatur
 Corriere, Matthew A
 Reeves, James G
East Point
 Barrocas, Albert
Macon
 Mix, John W
 Weger, Natalie S
Marietta
 Wyble, Charles W
Savannah
 Wixon, Christopher L
Thomasville
 Richardson, Albert I

HAWAI'I
Haleiwa
 Yellin, Albert E
Honolulu
 Chang, Walter YM
 Katras, Tony
 Kistner, Robert L
 Mort, Victor M
 Schneider, Peter A
Wailuku
 Waterford, R. Randolph
IDAHO
Coeur d’Alene
Kladar, Philip A
Ketchum
Fiaschetti, Frank L
Lewiston
Ozeran, Robert S
Pocatello
Vasquez, Julio C
Post Falls
Zahn, Richard L

ILLINOIS
Chicago
Hall, Heather A
Lind, Benjamin B
Chicago
Durham, Joseph R
Eskandari, Mark K
Morasch, Mark D
Yao, James ST
Downers Grove
Walsh, James J
Elk Grove Village
Cacioppo, Phillip L
Evanston
Halstuk, Kevin S
Glenview
Oldfield, R. Charles
Hinsdale
Naffah, Paul
Schuler, James J
Maywood
Mannava, Krishna
Oak Park
Hershberger, Richard C
Peoria
Hussain, Syed
Williams, James B
Springfield
Ash, Jennifer
Hasanadka, Ravishankar

INDIANA
Evansville
Patterson, Donald E
Fort Wayne
Deshner, William P
Ladowski, Joseph S
Schatzlein, Michael H
Indianapolis
Cikrit, Dolores F
Dalsing, Michael C
Lennon, Gary W
Motaganahalli, Raghunandan L
Sawchuk, Alan P
Shafique, Shoaib
Siderys, Harry

IOWA
Coralville
McDonnell, Peter J
Des Moines
Sern, John A
Iowa City
Kresowik, Timothy F
Sharp, William J
Waukee
Matsuura, John H

KANSAS
Kansas City
Thomas, James H
Pittsburg
Huebner, Robert S
Shawnee
Cho, Jenny G
<table>
<thead>
<tr>
<th>Location</th>
<th>Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topeka</td>
<td>Tayao, Manuel S</td>
</tr>
<tr>
<td>Wichita</td>
<td>Hutchinson, Steven A</td>
</tr>
<tr>
<td>KENTUCKY</td>
<td></td>
</tr>
<tr>
<td>Lexington</td>
<td>Atkins, Colby P</td>
</tr>
<tr>
<td></td>
<td>Endean, Eric D</td>
</tr>
<tr>
<td></td>
<td>Carter, Robert</td>
</tr>
<tr>
<td></td>
<td>O’Keefe, Shane D</td>
</tr>
<tr>
<td>Louisville</td>
<td>Nightingale, David S</td>
</tr>
<tr>
<td></td>
<td>Ross, Charles B</td>
</tr>
<tr>
<td></td>
<td>Schmieder, Gregory C</td>
</tr>
<tr>
<td>LOUISIANA</td>
<td></td>
</tr>
<tr>
<td>Baton Rouge</td>
<td>McNeil, James W</td>
</tr>
<tr>
<td>Gretna</td>
<td>Kappelman, Mark D</td>
</tr>
<tr>
<td>Lafayette</td>
<td>Litzman, Mitchell D</td>
</tr>
<tr>
<td>Marrero</td>
<td>Guidry, London</td>
</tr>
<tr>
<td>New Orleans</td>
<td>Hollier, Larry H</td>
</tr>
<tr>
<td></td>
<td>Lang, Erich K</td>
</tr>
<tr>
<td></td>
<td>Sternbergh, W. Charles, III</td>
</tr>
<tr>
<td></td>
<td>Torrance, Bruce S</td>
</tr>
<tr>
<td></td>
<td>Walsh, John J, Jr</td>
</tr>
<tr>
<td>MAINE</td>
<td></td>
</tr>
<tr>
<td>Biddeford</td>
<td>Georgitis, James W</td>
</tr>
<tr>
<td>Falmouth</td>
<td>Nasir Khan, Mohammad U</td>
</tr>
<tr>
<td>Fort Fairfield</td>
<td>Shapiro, Ivan</td>
</tr>
<tr>
<td>Rockport</td>
<td>White, Julie G</td>
</tr>
<tr>
<td>MARYLAND</td>
<td></td>
</tr>
<tr>
<td>Annapolis</td>
<td>Martin, John D</td>
</tr>
<tr>
<td>Arnold</td>
<td>Clark, Nancy S</td>
</tr>
<tr>
<td>Baltimore</td>
<td>Vieta, Paul A, Jr</td>
</tr>
<tr>
<td>Baltimore</td>
<td>Buchbinder, Dale</td>
</tr>
<tr>
<td></td>
<td>Byrne, Christopher</td>
</tr>
<tr>
<td></td>
<td>Flinn, William R</td>
</tr>
<tr>
<td></td>
<td>Floyd, Lisa</td>
</tr>
<tr>
<td></td>
<td>Freischlag, Julie Ann</td>
</tr>
<tr>
<td></td>
<td>Fugate, Mark W</td>
</tr>
<tr>
<td></td>
<td>Gopal, Kapil</td>
</tr>
<tr>
<td></td>
<td>Heffler, Jennifer A</td>
</tr>
<tr>
<td></td>
<td>Queral, Luis A</td>
</tr>
<tr>
<td></td>
<td>Reifsnider, Thomas</td>
</tr>
<tr>
<td></td>
<td>Williams, Timothy K</td>
</tr>
<tr>
<td>Bethesda</td>
<td>Rich, Norman M</td>
</tr>
<tr>
<td>Bowie</td>
<td>Hughes, Kakra</td>
</tr>
<tr>
<td>Brookeville</td>
<td>Fox, Charles J</td>
</tr>
<tr>
<td>Cheverly</td>
<td>Holbrook, William A</td>
</tr>
<tr>
<td>Crownsville</td>
<td>Deaton, David H</td>
</tr>
<tr>
<td>Davidsonville</td>
<td>Stanziale, Stephen</td>
</tr>
<tr>
<td>Frederick</td>
<td>Rosenberg, Garth D</td>
</tr>
<tr>
<td>Glen Burnie</td>
<td>Benjamin, Marshall E</td>
</tr>
<tr>
<td>Glenn Burnie</td>
<td>Neschis, David G</td>
</tr>
<tr>
<td>Rockville</td>
<td>Fox, Robert L</td>
</tr>
<tr>
<td></td>
<td>Silva, Richard A</td>
</tr>
<tr>
<td></td>
<td>Sulkin, Michael D</td>
</tr>
<tr>
<td></td>
<td>Wang, Jeffrey Y</td>
</tr>
</tbody>
</table>
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

Rosedale
Abu Ghaida, Ahmad M

Silver Spring
Hutton, John E, Jr

MASSACHUSETTS

Andover
Johnston, Hubert A
LeMaitre, George D
Sannella, Nicholas A

Bedford
Lowney, Bruce W

Boston
Belkin, Michael
Brewster, David C
Chaikof, Elliot L
Ciocca, Rocco G
Conrad, Mark F
Farber, Alik
Hamdan, Allen D
Iaffreda, Mark D
McBrute, Kevin J
Pomposelli, Frank B
Schermherhorn, Marc L
Tan, Tze-Woei
Woodson, Jonathan

Brockton
Becher, Robert M

Burlington
Jewell, Edward R

Canton
Nannery, W. Mark

Fall River
Fogle, Martin A

Falmouth
Skudder, Paul A, Jr

Florence
Jackson, David R

Framingham
Donaldson, Magruder C

Haverhill
Kwass, Walter

Hyannis
Gorin, Daniel R

Lawrence
Gordon, Jonathan K
Muto, Paula M

Newton
Biuckians, G. Tom

North Chelmsford
Burke, Paul M, Jr

Northborough
Maini, Baltej S

Pittsfield
Basile, Richard M
Cohn, Michael S
Curletti, Eugene L

Somerville
Peters, Albert F

Springfield
Hirko, Mark K
Rhee, Sang W

Stoneham
Cantelmo, Nancy L
Nath, Ronald L
Stoughton, Julianne
Tameo, Michael N

West Roxbury
Raffetto, Joseph D

Worcester
Baril, Donald T
Josephs, Leon G

MICHIGAN

Ann Arbor
Coleman, Dawn

Ann Arbor
Escobar, Guillermo
Kabbani, Loay S

Bingham Farms
Brown, O. William

Detroit
Kadakol, Ajith

Detroit
Esco, Miechia
Menes, Keith C
SCVS • 40TH ANNUAL SYMPOSIUM ON VASCULAR SURGERY

Detroit
Chacko, John
Millikan, Clark H
Nypaver, Timothy J
Rubin, Jeffrey R

Dexter
Vandy, Frank C

Grand Rapids
Wheatley, Brian

Grand Rapids
Hagelberg, Richard S
Kim, Youn S
Mansour, M. Ashraf
Robson, Larry J

Grosse Pointe Shores
Haddad, Georges K

Kalamazoo
Jain, Krishna M

Livonia
Ramakrishnan, Vellore R
Whitten, James I

Luna pier
Bazzi, Mazen M

Mt. Clemens
Buresh, Jarrod A

Northville
Lin, Judith C

Petoskey
Kazmers, Andris

Pontiac
Hernandez, Diego A

Port Huron
Lee, Robert E

Royal Oak
Bove, Paul Guy
Long, Graham W
Shanley, Charles J

Saginaw
Bays, Ronald A

Southfield
Aboulafia, Elie D
Boules, Tamer N

St. Clair Shores
Berg, Richard A
Mattos, Mark A

Troy
Engle, Jennifer S
Rimar, Steven D

West Bloomfield
Granke, Kenneth

MINNESOTA

Duluth
Bunch, Christopher T
Kubista, Theodore P
Monge, James

Minneapolis
Gannon, Paul G
Santilli, Steven M
Sullivan, Timothy M

Plymouth
McMillan, William D

Rochester
Garg, Nitin

Rochester
Bower, Thomas C
Duncan, Audra A
Glovički, Peter
Harbuzariu, Catalin
Kalra, Manju
Oderich, Gustavo S
Rits, Yevgeniy M

St. Louis Park
Melin, Matthew MA

MISSISSIPPI

Hattiesburg
Farmer, Charles E, Jr
Thompson, J. Keith

Jackson
Mitchell, Marc E
Rushton, Fred W, Jr

Meridian
Rush, L. Vaughan, Jr
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

MISSOURI

Chesterfield
 Alexander, George K
Columbia
 Adams, John G, Jr
 Humphrey, Paul W
Jefferson City
 Exon, C. Stuart
Kansas City
 Solomon, Andrew R
St. Charles
 Schneider, Thomas A, II
St. Joseph
 Lukens, Matthew L
St. Louis
 Jim, Jeffrey
St. Louis
 Allen, Brent T
 Kraeger, Russell R
 Pennell, Richard C
 Rubin, Brian G
 Sanchez, Luis A
 Smeds, Matthew R
 Wittgen, Catherine M
Thayer
 Sauer, Paul E

NEVADA

Carson City
 Halow, Kevin D
Las Vegas
 Cottrell, Earl D
 Leider, Harold J
 Luh, Eddy H
 McNyre, Kenneth E, Jr
Reno
 Callerata, H. Treat
 Sieffert, George F
 Thomassen, J. Paul

NEW HAMPSHIRE

Lebanon
 Cronenwett, Jack L
Manchester
 Furey, Patricia C
Salem
 Miller, Normand

NEW JERSEY

Belleville
 Levison, Jonathan A
Berkley Heights
 Nitzberg, Richard S
Blackwood
 O'Neill, Alissa B
Brick
 Sharp, Frank
Camden
 Lombardi, Joseph V
Camden
 Taylor, Nyali E
Camden
 Alexander, James B
 Camishion, Rudolph C
 Carpenter, Jeffrey P
 Kumar, Sanjay

NEBRASKA

Norfolk
 Almaroof, Babatunde
 Bell, Donald D
SCVS • 40TH ANNUAL SYMPOSIUM ON VASCULAR SURGERY

Clifton
Ciocon, Hermogenes L

Edison
Ellman, Barry R

Egg Harbor Twp
Salartash, Khashayar

Emerson
Walsky, Robert S

Englewood
Dardik, Herbert
Elias, Steven
Ibrahim, Ibrahim M
Impeduglia, Theresa M
Kahn, Mark E
Wengerter, Kurt R
Wolodiger, Fred A

Franklin Park
Mousa, Albeir Y

Glen Ridge
Patel, Kumar R

Hackensack
Moss, Charles M

Hainesport
Barnes, Thomas L
Briones, Renato J

Hamburg
Dash, Sarat

Livingston
Brener, Bruce J
Curi, Eli

Lumberton
Rough, William A

Morristown
Moritz, Mark W

New Brunswick
Graham, Alan M
O’Donnell, Paul
Vogel, Todd R

Ocean
Baret, Alexander C

Paramus
Wasserman, Dean H

Pleasantville
Rosenblatt, Alfred

Rockaway
Rupani, Bobby J

Rockleigh
Berknik, Thomas R

Rumson
Gilbertson, Francis E

Somers Point
Feinberg, Gary L
Galler, Leonard
Gosin, Jeffrey S

South Plainfield
Breithart, Gary B
Richmand, David M

Trenton
Hardesty, William

Voorhees
Fisher, Frederick S
Gribnik, Thomas A
Minor, Robert B

West Long Branch
Kolakowski, Stephen, Jr

Westfield
Holmes, Raymond J
Mlynarczyk, Peter
Sales, Clifford M

Whippany
Manicone, John A

NEW MEXICO

Albuquerque
Biggs, Kristen L
Corson, John D
Floyd, Vaun T
Langsfeld, Mark

Las Cruces
Lindley, Jearl R

Santa Fe
Martin, Alfred J, Jr
NEW YORK

Albany
Chang, Benjamin B
Darling, R. Clement, III
Kreienberg, Paul B
Lloyd, William E
Mehta, Manish
Ozsvath, Kathleen J
Paty, Philip SK
Roddy, Sean P
Shah, Dhiraj M
Spirig, Andreas M

Amityville
Gensler, Stanley W

Bronx
Riaz, Omer

Brooklyn
Ascher, Enrico
Diaz, Carlos A
Hingorani, Anil P
Purcell, Roland R
Semaan, Elie S
Tran, Victor Q
Wright, Albert M

Buffalo
Anain, Joseph M
Anain, Paul
Blochle, Raphael
Dosluoglu, Hasan H
Dryjski, Maciej L
Harris, Linda M
Taheri, Syde A

Fayetteville
Schwartz, Robert A

Floral Park
Mutyala, Manikyam
Patel, Nirav S

Flushing
Deckoff, Stephen L

Fresh Meadows
Pasklinsky, Garri

Glen Cove
Vitale, Gerard F

Great Neck
Purtill, William A

GreenLawn
Gennaro, Mark

Hawthorne
Bah, Sateesh C
Shah, Pravin M

Hewlett
Flores, Lucio

Holland Patent
Max, Theodore C

Lake Success
Chaudhry, Saqib S
Doscher, William
Frankini, Larry A
Krishnasasstry, Kamphampaty
Rosa, Mihai
Schutzer, Richard W

Manhasset
Swersky, Robert B

Middletown
Fiorianti, John A
Kulak, Robert G

New York
Connolly, Peter
Dexter, David J, II
Loh, Shang
Salloum, Sasha A
Shrikhande, Gautam

New York
Adelman, Mark A
Aiello, Francesco A
Bush, Harry L, Jr
Davila Santini, Luis R
Dudkiewicz, Michael
Faries, Peter L
Gallagher, Katherine
Harrington, Elizabeth B
Harrington, Martin E
Jacobowitz, Glenn R
Jacobson, Julius H, II
Kim, Billy J
Malik, Rajesh
Marr, Michael L
McKinsey, James F
Mendes, Donna M
Morrissey, Nicholas J
Mussa, Firas F
Nalbandian, Matthew M
O’Connor, David
Poblete, Honesto M
Qin, Feng
Rockman, Caron R
Schanzer, Harry R
Shah, Tejas R
Sundick, Scott
Teodorescu, Victoria J
Veith, Frank J
Xenophontos, Xenophon P

Niskayuna
Gelfand, Michael L

Orchard Park
Rade, Michael P

Pittsford
Rizk, Toufic A

Poughkeepsie
Saltzberg, Stephanie S

Rochester
Balaji, Malur R
Chandra, Ankur
Gargiulo, Nicholas J, III
Geary, Joseph E
Rhodes, Jeffrey M
Schwartz, Seymour I
Svoboda, Jerry J

Roslyn
Chang, John B

Staten Island
Deitch, Jonathan S
Fodera, Maria Elena
Michaluk, Brian T
Raju, Ramanathan

Syosset
Badhey, Mohan R

Syracuse
Amankwah, Kwame S
Gahtan, Vivian

Utica
Lauterbach, Stephen R

Williamsville
Peer, Richard M

Yonkers
Tannenbaum, Gary A

NORTH CAROLINA
Chapel Hill
Farber, Mark A
Vallabhaneni, Raghuveer

Charlotte
Lalka, Stephen G
Marsden, Brent

Durham
O’Brien, Patrick

Durham
Mureebe, Leila

Gastonia
Eze, Augustine R

Greenville
Ehlert, Bryan

Greenville
Bogey, William M, Jr
Powell, C. Steven
Stoner, Michael C

High Point
Shull, Kenneth C

Highlands
Estes, James W

Huntersville
McDougal, Jennifer L

Jacksonville
McCartney, Stephen F

Pinehurst
Averbook, Allen W
Averbook, Beryl D

Richmond
Berman, Joel A

Shallotte
Nelson, Harry M

Winston-Salem
Ghanami, Racheed J
Simpson, Thomas E
NORTH DAKOTA

Bismarck
Swenson, Wayne M

Fargo
Traynor, Michael D

Rugby
Kurihara, Wallace K

OHIO

Akron
Moawad, John

Canton
Prem, Jeffrey T

Chagrin Falls
Savrin, Ronald A

Cincinnati
Kuhn, Brian

Cincinnati
Annenberg, Alan J
Giglia, Joseph S
Kempczinski, Richard
Loehr, Joann M
Meier, George H
Muck, Patrick E
Roedersheimer, L. Richard
Welling, Richard E

Cleveland Heights
Arthurs, Zachary M
Constantinou, Constantinos

Cleveland
Ellis, Jennifer
Kaleka, Gurjeet
Rajani, Ravi
Zahiradnik, Vladimir

Cleveland
Alexander, J. Jeffrey
Bertin, Vincent J
Brahmanandam, Soma M
Clair, Daniel G
Eagleton, Matthew J
Guzman, Edgar D
Kashyap, Vikram S
Lyden, Sean P
Sarac, Timur P
Weinberger, Jeffrey

Columbus
Hannun, Ghaleb A
Hartranft, Thomas H
Holden, Charles R
Kulwicki, Aaron D
Litzendorf, Maria E
Vermilion, Blair D
Vincent, Gilford S

Dayton
Williams, Philip C

Dover
Miller, M. Todd

Duncan Falls
Katz, Sherman A

Findlay
Malone, Michael D

Hudson
Erzurum, Victor Z

Maumee
Afridi, M. Farooq

Portsmouth
Khoury, Thomas L

Sandusky
Swayngim, Dowzell M, Jr

Shakar Heights
Margni, Mohammed N

Shaker Heights
Kang, Wade W

Springfield
Neravetla, Surender R

Steubenville
Macedonia, Dominic A

Sylvania
Sbrocchi, Richard D

Toledo
Aziz, Faisal

Toledo
Di Fiore, Richard

Toledo
Balkany, Louis
Comerota, Anthony J
Nazzal, Munier M
Zelenock, Gerald B
Roster

SCVS • 40th Annual Symposium on Vascular Surgery

Wheelersburg
Hochstetler, Marion, Jr
Willoughby
Rollins, David L
Youngstown
Kollipara, Venkata SK
Silverton
Waters, Harris J
West Linn
Holmes, Keith D
Ottawa
Kubelik, Dalibor

Oklahoma

- **Oklahoma City**
 Mehta, Kautilya A
 Riggs, Michael O
- **Tulsa**
 Blebea, John
 Loughridge, BP

Ontario

- **Toronto**
 Cardella, Jonathan A

Oregon

- **Ashland**
 Cary, Stephen C
- **Bend**
 Kelley, Harley D
- **Eugene**
 Harris, Robert W
 Swangard, Robert J
 Watson, Milton R
- **Medford**
 Schwartz, John A
- **Newberg**
 Acker, Robert L
- **Portland**
 Dickson, Alfred H
 Eidemiller, Larry R
 Inahara, Toshio
 Lee, Dae
 Leon, Fernando
- **Salem**
 Fleming, Mark D

Pennsylvania

- **Abington**
 Sullivan, Theodore R, Jr
- **Bethlehem**
 Rosenfeld, Joel C
- **Bryn Mawr**
 Matsumoto, Teruo
- **Carlisle**
 Campbell, Joseph J
- **Chester**
 DiGiovanni, Robert J
- **Clarks Summit**
 Kutz, John A
- **Danville**
 Elmore, James R
 Gray, John L
 Ryer, Evan
- **Easton**
 Balshi, James D
 Fisher, Jay B
 Oskin, Timothy C
- **Feasterville**
 Chu, Michael H
- **Greensburg**
 Ambrosino, John J
 Kenney, David A
- **Hershey**
 Messiner, Ryan
- **Hershey**
 Ampu, Robert G
 Han, David C
- **Huntingdon Valley**
 Pellecchia, Patrick E
Lake Harmony
Klein, Lawrence

Lehigh Valley
Stabile, Jerome G

Lewisburg
Stefan, Todd M

Mars
Marone, Luke K

Meadowbrook
Winkler, Gabor A

North Wales
Samhouri, Farouq Ali

Penn Valley
Weingarten, Michael S

Philadelphia
Blom, Aaron S
Foley, Paul
Moudgill, Neil

Philadelphia
Bagameri, Gabor
Baum, Stanley
Beeman, Brian R
Calligaro, Keith D
DiLaurentis, Dominic A
Dillavou, Ellen D
DiMuzio, Paul J
Dougherty, Matthew J
Eisenberg, Joshua A
Fairman, Ronald M
Golden, Michael A
Hayes, Daniel, Jr
Kerstein, Morris D
Mantell, Mark P
Mohran, Chittur R
Palchik, Eugene
Rakhlin, Elena Y
Raviola, Carol A
Smullens, Stanton N
Soundararajan, Krish
Wagner, F. William, Jr
Wang, Grace J
Woo, Edward Y

Pittsburgh
Al-Khoury, Georges E
Benckart, Daniel H
Celis, Rolando
Chaer, Rabih A
Cho, Jae-Sung
Hirsch, Stanley
Jarrett, Fredric
Leers, Steven A
Makaroun, Michel S
Muluk, Satish C
Rams, James J
Rhee, Robert Y
Rosales, Carlos A
Seed, David L
Webster, Marshall W

Plains
Yavorski, Chester C

Pottsville
Kholoussy, A. Mohsen

Reading
Impellizzeri, Paul

Sayre
Deshmukh, Narayan
Larson, Robert A
Wang, Xiujie

Sellersville
Rilling, David C

Sewickley
Collier, Paul E

St. Clair
Meeran, M. Mohamed

Villanova
Berkowitz, Henry D

West Reading
Brigham, Robert A

Wilkes-Barre
DeRojas, Juan J

Wyndmoor
Kahn, Mark B

York
Castronuovo, John J, Jr
PUERTO RICO
San Juan
Rodriguez, Agustin A

RHODE ISLAND
Providence
Garcia-Toca, Manuel

SOUTH CAROLINA
Charleston
Tonnessen, Britt H
Columbia
Bunt, TJ
Florence
Cunningham, Christopher G
Greenville
Carsten, Christopher G, III
Cornett, VE
Martin, Sloan
Quinn, Brendon M
York, John W
Youkey, Jerry R
Spartanburg
Bottsford, John E, Jr
Calton, William C, Jr

TEXAS
Amarillo
Irwin, Chance L
Belton
Marrocceo, Christopher S
Corpus Christi
Rutherford, Robert B
Dallas
Bukhari, Hassan
Gable, Dennis R
Kirkwood, Melissa
Pearl, Gregory J
Smith, Sumona,
Fort Worth
Choudhry, Karamat U
Galveston
Diaz-Arrastia, Ramon S
Silva, Michael B, Jr
Horseshoe Bay
Manning, Larry G
Houston
Cheema, Zulfiqar F
Ochoa, Lyssa N

TENNESSEE
Chattanooga
Erdoes, Luke S
Hogan, Michael B
Phade, Sachin
Schoch, Denny
Sprouse, L. Richard, II
Knoxville
Cook, Richard B
Goldman, Mitchell H
Stevens, Scott L
Mountain Home
Massello, Thomas P
Nashville
Naslund, Thomas C
Schumacher, Paul M

Youkey, Jerry R
Spartanburg
Bottsford, John E, Jr
Calton, William C, Jr

2012_SCVS_Book.book Page 335 Tuesday, February 28, 2012 3:48 PM
Humble
Bhatia, Devinder S

Lantana
Ortega, Raul E

Nacogdoches
Brown, Lyle L

Plano
Baird, David B

Richardson
Koutras, Phoebus

San Antonio
Colt, James
Harrell, Patrick A
Sheehan, Maureen K
Wengrovitz, Mark

Temple
Rueda, Carlos A

Temple
Bohannon, W. Todd
Buckley, Clifford J
Bush, Ruth L
Warren, Thomas R, II

Tyler
DeCamp, Byron S
Sanfelippo, Peter M

Webster
Martin, Gordon H

Chesapeake
Day, Jarrod D

Falls Church
Aryavand, Behdad

Fredericksburg
Koenig, Frank L

Manassas
Farr, Joseph G

Mechanicsville
Brown, Jeff A

New Market
Paszewskiak, Jacek J

Norfolk
Stout, Christopher

Norfolk
Chen, Brian
Panneton, Jean M

Portsmouth
Arbid, Elias J

Reston
Podolsky, Robert S

Richmond
Amendola, Michael F
Gould, Charles F
Mukherjee, Avik
Pfeifer, John S

Roanoke
Hill, Stephen L
Sibley, William L, III

Virginia Beach
Parent, F. Noel, III
Shah, Rasesh M
Wheeler, Jock R

Williamsburg
Landis, Michael E

UTAH
Salt Lake City
Ihnat, Daniel M
Sarfati, Mark R

South Ogden
Steppacher, Robert C

VIRGINIA
Arlington
Heremman, E. Craig

Charlottesville
Cherry, Kenneth J, Jr
Upchurch, Gilbert R, Jr

WASHINGTON
Belfair
Masley, Arpad L.

Port Orchard
Sundaram, Shankar M
SCVS • 40TH ANNUAL SYMPOSIUM ON VASCULAR SURGERY

Redmond
Gillespie, James T

Seattle
Kremer, Richard M
Sauvage, Lester R
Whitten, Matthew G

Spokane
Lasalle, Andre J
Reilly, M. Kathleen

Tacoma
Graeve, Allen H
McAlexander, Robert A
Quan, Reagan W

Vancouver
Teso, Desarom

Walla Walla
Gibbs, Benjamin F, Jr

WEST VIRGINIA

Charleston
AbuRahma, Ali F

Morgantown
McDowell, Donald E

Parkersburg
McGraw, Daniel J

Wheeling
Rahbar, Ahmad

WISCONSIN

Madison
Acher, Charles W
Hoch, John R
Kent, K. Craig
Matsumura, Jon S
Weiss, Victor J

Milwaukee
Brown, Kellie R
Pasch, Allan R

Racine
Siegert, Robert F

WYOMING

Cody
Collicott, Paul E
Members Outside United States

Australia
- **New South Wales**
 - Sydney
 - May, James

Queensland
- Brisbane
 - Mellick, Selim A
- Wyong
 - Ramanathan, Anantha K

Canada
- Montreal
 - Kvinlaug, Kylie

British Columbia
- Vancouver
 - Sladen, Joseph G
- Montreal
 - Bruneau, Luc
 - Page, Arthur

Ontario
- London
 - Forbes, Thomas L
- Toronto
 - Wooster, Douglas L
- Whitby
 - Aggett, Paul W

Saskatchewan
- Regina
 - McCarville, Donald J
- Toronto
 - Johnston, K. Wayne

Cyprus
- Nicosia
 - Nicolaides, Andrew N

Denmark
- Aarhus
 - Paaske, William P

England
- Channel Islands
 - Browse, Norman L

Israel
- Jerusalem
 - Spigelman, Auri

Lebanon
- Beirut
 - Hoballah, Jamal J
 - Shamma, Asad R

Panama
- Chiriqui
 - Scobie, T. Keith

Puerto Rico
- San Juan
 - Joglar, Fernando L

Russia
- Moscow
 - Papoyan, Simon A
SCVS COMMERCIAL EXHIBITORS 2012

EXHIBIT/PAVILION DATES & HOURS

Wednesday, March 14TH
2:00 pm - 6:30 pm

Thursday, March 15TH
7:00 am - 11:30 am

11:30 am - 4:00 pm
(Dedicated Pavilion Time)

Friday, March 16TH
7:00 am - 5:00 pm

Saturday, March 17TH
7:30 am - 8:30 am

LOCATION

ANGIODYNAMICS
14 Plaza Drive, Latham, NY 12110
www.angiodynamics.com

ARSTASIS
740 Bay Road, Redwood City, CA 94063
www.arstasis.com

ATRIUM MEDICAL
5 Wentworth Drive, Hudson, NH 03051
www.atriummedical.com

BARD PERIPHERAL VASCULAR
1415 West 3rd Street, Tempe, AZ 85281
www.bardpv.com

BOSTON SCIENTIFIC CORPORATION
One Scimed Place, Maple Grove, MN 55311
www.bostonscientific.com

CONSENSUS MEDICAL SYSTEMS, INC.
205-5631 No. 3 Street, Richmond, BC V6X 2C7, Canada
www.consensusmed.com

COOK MEDICAL
PO Box 489, Bloomington, IN 47402
www.cookmedical.com

CORDIS, A J&J CO
430 Route 22 East, Bridgewater, NJ 08807
www.cordis.com
SCVS • 40TH ANNUAL SYMPOSIUM ON VASCULAR SURGERY

COVIDIEN...Pavilion 7
15 Hampshire Street, Mansfield, MA 02048
www.covidien.com

CRYOLIFE, INC. ...Table 1
1655 Roberts Boulevard, Kennesaw, GA 30144
www.cryolife.com

EDWARDS LIFESCIENCES...Table 28
One Edwards Way, Irvine, CA 92614
www.edwards.com

ENDOLOGIX...Table 20
11 Studebaker, Irvine, CA 92650
www.endologix.com

GORE & ASSOCIATES..Pavilion 6&8
1505 North Fourth Street, Flagstaff, AZ 86004
www.goremedical.com

INTERSOCIETAL ACCREDITATION COMMISSION (IAC) Table 14
6021 University Blvd., Suite 500, Ellicott City, MD 21043
www.intersocietal.org

IMPLANTABLE DEVICES, INC...Table 6
3851 62nd Ave N, Suite A, Pinellas, FL 33781

INAVEIN, LLC...Table 2
420 Bedford Street, Lexington, MA 02420
www.inavein.com

LEMAITRE VASCULAR, INC.................................Table 3
63 Second Avenue, Burlington, MA 01803
www.lemaitre.com

M2S INC...Table 8
12 Commerce Avenue, West Lebanon, NH 03784
www.m2s.com

MED STREAMING, LLC..Table 26
8201 164th Avenue NE, Redmond, WA, 98052
www.medstreaming.com

MEDTRONIC..Pavilion 3&5
3356 Unocal Place, Santa Rosa, CA 95403
www.medtronic.com/physician/vascular
MARCH 13–17, 2012 • ENCORE AT THE WYNN, LAS VEGAS, NEVADA

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Table Number</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORGANOGENESIS INC.</td>
<td>Table 5</td>
<td>85 Dan Road, Canton, MA 02021</td>
</tr>
<tr>
<td>OSBORN MEDICAL</td>
<td>Table 11</td>
<td>100 West Main Street, PO Box 324, Utica, MN 55979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>www.osbornmedical.com</td>
</tr>
<tr>
<td>PENRAD TECHNOLOGIES</td>
<td>Table 7</td>
<td>10580 Wayzata Blvd., Suite 200, Minnetonka, MN 55305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>www.penrad.com</td>
</tr>
<tr>
<td>SCANLAN INTERNATIONAL, INC.</td>
<td>Table 21</td>
<td>One Scanlan Plaza, St. Paul, MN 55107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>www.scanlaninternational.com</td>
</tr>
<tr>
<td>SEMLER SCIENTIFIC, INC.</td>
<td>Table 23</td>
<td>2330 NW Everett Street, Portland, OR 97210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>www.flohec.com</td>
</tr>
<tr>
<td>SOCIETY FOR VASCULAR SURGERY</td>
<td>Table L2</td>
<td>633 North Saint Clair Street, 22nd Floor, Chicago, IL 60611</td>
</tr>
<tr>
<td>SVS PATIENT SAFETY ORGANIZATION</td>
<td>Table L1</td>
<td>633 North Saint Clair Street, 22nd Floor, Chicago, IL 60611</td>
</tr>
<tr>
<td>TERUMO CARDIOVASCULAR SYSTEMS</td>
<td>Table 27</td>
<td>6200 Jackson Road, Ann Arbor, MI 48103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>www.terumo-cvs.com</td>
</tr>
<tr>
<td>VASCULAR TRANSPLANT SERVICES</td>
<td>Table 15</td>
<td>2122 Palmer Drive, Schaumburg, IL 60173</td>
</tr>
<tr>
<td></td>
<td></td>
<td>www.vasculartransplantservices.org</td>
</tr>
<tr>
<td>VOLCANO CORPORATION</td>
<td>Table 30</td>
<td>3661 Valley Centre Drive Suite 200, San Diego, CA 92130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>www.volcanocorp.com</td>
</tr>
<tr>
<td>WEXLER SURGICAL SUPPLIES</td>
<td>Table 16</td>
<td>11333 Chimney Rock Road, #110, Houston, TX 77035</td>
</tr>
<tr>
<td></td>
<td></td>
<td>www.wexlersurgical.com</td>
</tr>
</tbody>
</table>
Author/Faculty Index

<table>
<thead>
<tr>
<th>Author/Faculty</th>
<th>Program Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abramov, Igor</td>
<td>3</td>
</tr>
<tr>
<td>AbuRahma, Ali</td>
<td>P30</td>
</tr>
<tr>
<td>Adams, Matthew K</td>
<td>MP12, MP37, P32</td>
</tr>
<tr>
<td>Adelman, Mark A</td>
<td>P10, MP28, MP29</td>
</tr>
<tr>
<td>Adeyemo, Adewunmi</td>
<td>P35</td>
</tr>
<tr>
<td>Ahanchi, Sadaf S</td>
<td>P11</td>
</tr>
<tr>
<td>Ahmed, Farhan G</td>
<td>P32</td>
</tr>
<tr>
<td>Aiello, Francesco A</td>
<td>20, 21, MP4, P22, SIG Speaker</td>
</tr>
<tr>
<td>Ailawadi, Gorav</td>
<td>MP10, MP24</td>
</tr>
<tr>
<td>Ali, Ahsan T</td>
<td>MP34</td>
</tr>
<tr>
<td>Ali, Mujtaba M</td>
<td>MP6</td>
</tr>
<tr>
<td>Ali, Ahsan T</td>
<td>P12</td>
</tr>
<tr>
<td>Al-Khatib, Weesam K</td>
<td>MP17</td>
</tr>
<tr>
<td>Alktaifi, Ali</td>
<td>P19, EP14</td>
</tr>
<tr>
<td>Allemang, Matthew T</td>
<td>EP33</td>
</tr>
<tr>
<td>Almaroof, Babatunde M</td>
<td>P11</td>
</tr>
<tr>
<td>Anaya-Ayala, Javier E</td>
<td>MP12, MP37, P42, P17, P23, P29, P32,EP13</td>
</tr>
<tr>
<td>Andrews, James</td>
<td>MP48</td>
</tr>
<tr>
<td>Andrews, Jeanette S</td>
<td>P28, EP21</td>
</tr>
<tr>
<td>Angelson, Mary</td>
<td>EP17</td>
</tr>
<tr>
<td>Antonello, Michele</td>
<td>P9</td>
</tr>
<tr>
<td>Argyriou, Christos</td>
<td>EP18</td>
</tr>
<tr>
<td>Arko, Frank R</td>
<td>P24</td>
</tr>
<tr>
<td>Arya, Shipra</td>
<td>SIG Speaker</td>
</tr>
<tr>
<td>Atluri, Tej K</td>
<td>EP21</td>
</tr>
<tr>
<td>Azizzadeh, Ali</td>
<td>MP57, EP2</td>
</tr>
<tr>
<td>Baig, M Shadman</td>
<td>MP51</td>
</tr>
<tr>
<td>Bakken, Andrew M</td>
<td>MP35</td>
</tr>
<tr>
<td>Banegas, Shonda</td>
<td>P14</td>
</tr>
<tr>
<td>Banko, Christopher</td>
<td>EP6</td>
</tr>
<tr>
<td>Bannazadeh, Mohsen</td>
<td>P35</td>
</tr>
<tr>
<td>Barbetta, Iacopo</td>
<td>MP19</td>
</tr>
<tr>
<td>Baril, Donald T</td>
<td>MP6</td>
</tr>
<tr>
<td>Barr, Hilary</td>
<td>EP6</td>
</tr>
<tr>
<td>Barshes, Neal</td>
<td>MP32</td>
</tr>
<tr>
<td>Author/Faculty</td>
<td>Program Number</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Bavare, Charudatta S</td>
<td>MP12, MP40, P17, P23, P29</td>
</tr>
<tr>
<td>Bavaria, Joseph E</td>
<td>MP25, MP31</td>
</tr>
<tr>
<td>Bazan, Hernan A</td>
<td>MP52, EP16</td>
</tr>
<tr>
<td>Beaver, Thomas M</td>
<td>13</td>
</tr>
<tr>
<td>Beavers, Fred</td>
<td>EP4</td>
</tr>
<tr>
<td>Bechara, Carlos F</td>
<td>MP32</td>
</tr>
<tr>
<td>Beck, Adam W</td>
<td>6, 13, MP22</td>
</tr>
<tr>
<td>Belkin, Michael</td>
<td>P16</td>
</tr>
<tr>
<td>Bensley, Rodney P</td>
<td>4, MP5, EP12, EP29</td>
</tr>
<tr>
<td>Berceli, Scott A</td>
<td>6, MP22</td>
</tr>
<tr>
<td>Berger, Jeffrey S</td>
<td>10</td>
</tr>
<tr>
<td>Berguer, Ramon</td>
<td>MP21</td>
</tr>
<tr>
<td>Berland, Todd</td>
<td>MP29</td>
</tr>
<tr>
<td>Berman, Scott S</td>
<td>Focused Session Speaker</td>
</tr>
<tr>
<td>Bertges, Daniel J</td>
<td>2</td>
</tr>
<tr>
<td>Bhamidipati, Castiglione M</td>
<td>P15, P26</td>
</tr>
<tr>
<td>Bietz, Gabriel J</td>
<td>EP38</td>
</tr>
<tr>
<td>Bilfinger, Thomas V</td>
<td>P8</td>
</tr>
<tr>
<td>Bismuth, Jean</td>
<td>MP12, MP37, MP40, MP42, P2, P17, P23, P32</td>
</tr>
<tr>
<td>Blebea, John</td>
<td>EP10</td>
</tr>
<tr>
<td>Bluth, Edward</td>
<td>MP52</td>
</tr>
<tr>
<td>Bogy, William M</td>
<td>EP15</td>
</tr>
<tr>
<td>Boniscavage, Pamela</td>
<td>P33</td>
</tr>
<tr>
<td>Boonn, William W</td>
<td>18</td>
</tr>
<tr>
<td>Boschiero, Federico</td>
<td>P9</td>
</tr>
<tr>
<td>Boudourakis, Leon D</td>
<td>P27</td>
</tr>
<tr>
<td>Bove, Paul G</td>
<td>EP37</td>
</tr>
<tr>
<td>Bower, Thomas C</td>
<td>Moderator, Focused Session Speaker, 16, MP30, MP35, MP48, EP7</td>
</tr>
<tr>
<td>Breen, Jerome</td>
<td>MP48</td>
</tr>
<tr>
<td>Brock, Sandi</td>
<td>P10</td>
</tr>
<tr>
<td>Brooke, Benjamin S</td>
<td>P1</td>
</tr>
<tr>
<td>Brown, O. William</td>
<td>Moderator, P35, EP40</td>
</tr>
<tr>
<td>Bunker, Clareann</td>
<td>19</td>
</tr>
<tr>
<td>Burruss, Matthew B</td>
<td>EP15</td>
</tr>
<tr>
<td>Bustami, Rami</td>
<td>EP6</td>
</tr>
<tr>
<td>Byrne, Raphael</td>
<td>19</td>
</tr>
<tr>
<td>Cambria, Richard P</td>
<td>Distinguished Visiting Professor, MP25</td>
</tr>
<tr>
<td>Cao, Piergiorgio</td>
<td>International Panelist</td>
</tr>
<tr>
<td>Capps, Timothy W</td>
<td>EP15</td>
</tr>
<tr>
<td>Caputo, Francis</td>
<td>SIG Speaker</td>
</tr>
<tr>
<td>Carmo, Michele</td>
<td>MP19</td>
</tr>
<tr>
<td>Carpenter, Jeffrey P</td>
<td>P5</td>
</tr>
<tr>
<td>Casey, Kevin</td>
<td>MP17</td>
</tr>
<tr>
<td>Author/Faculty</td>
<td>Program Number</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Cayne, Neal</td>
<td>MP28, MP29</td>
</tr>
<tr>
<td>Celis, Rolando</td>
<td>MP38</td>
</tr>
<tr>
<td>Cha, Stephen</td>
<td>16, MP30</td>
</tr>
<tr>
<td>Chaer, Rabih A</td>
<td>Program Committee, Moderator, 1, 11, 12, 19, MP38</td>
</tr>
<tr>
<td>Chaikof, Elliot L</td>
<td>4, MP5, MP43, EP12, EP29</td>
</tr>
<tr>
<td>Chambers, Christopher M</td>
<td>MP18, P14</td>
</tr>
<tr>
<td>Chandra, Ankur</td>
<td>MP11, P42</td>
</tr>
<tr>
<td>Chang, Catherine K</td>
<td>6, MP22</td>
</tr>
<tr>
<td>Chang, John B</td>
<td>P13</td>
</tr>
<tr>
<td>Charlton-Ouw, Kristofer M</td>
<td>MP57, EP2</td>
</tr>
<tr>
<td>Chen, Huiting (Tina)</td>
<td>MP32</td>
</tr>
<tr>
<td>Chen, Geraldine J</td>
<td>P32</td>
</tr>
<tr>
<td>Cherry, Kenneth J</td>
<td>MP10, MP24, P20, P26</td>
</tr>
<tr>
<td>Cheshire, Nicholas</td>
<td>International Panelist</td>
</tr>
<tr>
<td>Chess, Bart</td>
<td>EP5</td>
</tr>
<tr>
<td>Cheung, Albert T</td>
<td>15, P5</td>
</tr>
<tr>
<td>Chinnadurai, Ponraj</td>
<td>MP40, P2</td>
</tr>
<tr>
<td>Chiulli, Larissa</td>
<td>8</td>
</tr>
<tr>
<td>Cho, Jae</td>
<td>19</td>
</tr>
<tr>
<td>Choudry, Rashad</td>
<td>EP11</td>
</tr>
<tr>
<td>Christie, Jason W</td>
<td>P28, EP1</td>
</tr>
<tr>
<td>Ciocca, Rocco G</td>
<td>P18, P39</td>
</tr>
<tr>
<td>Clagett, GP</td>
<td>P24</td>
</tr>
<tr>
<td>Clair, Daniel</td>
<td>MP27</td>
</tr>
<tr>
<td>Cohen Hoffing, Russell</td>
<td>P19</td>
</tr>
<tr>
<td>Coleman, Catherine J</td>
<td>EP40</td>
</tr>
<tr>
<td>Collins, Michael</td>
<td>8</td>
</tr>
<tr>
<td>Combs, James M</td>
<td>EP22</td>
</tr>
<tr>
<td>Conlee, Thomas D</td>
<td>P28, EP1, EP21</td>
</tr>
<tr>
<td>Connolly, Peter</td>
<td>P22</td>
</tr>
<tr>
<td>Conrad, Mark F</td>
<td>MP49</td>
</tr>
<tr>
<td>Coogan, Sheila M</td>
<td>MP57, EP2</td>
</tr>
<tr>
<td>Copeland, Daniel</td>
<td>P10</td>
</tr>
<tr>
<td>Corriere, Mathew A</td>
<td>EP28</td>
</tr>
<tr>
<td>Corso, Paul</td>
<td>EP4</td>
</tr>
<tr>
<td>Craven, Timothy E</td>
<td>EP1</td>
</tr>
<tr>
<td>Cronenwett, Jack L</td>
<td>2, P1</td>
</tr>
<tr>
<td>Cuff, Robert F</td>
<td>MP18, P14</td>
</tr>
<tr>
<td>Cumbie, Todd</td>
<td>SIG Speaker</td>
</tr>
<tr>
<td>Da Silva, Priscilla</td>
<td>20</td>
</tr>
<tr>
<td>Daniels, Mike</td>
<td>6</td>
</tr>
<tr>
<td>Dao, Haisar</td>
<td>P39</td>
</tr>
<tr>
<td>Daridik, Alan</td>
<td>8</td>
</tr>
<tr>
<td>Darling, R. Clement</td>
<td>Moderator</td>
</tr>
<tr>
<td>Dasika, Narasimham L</td>
<td>MP23</td>
</tr>
<tr>
<td>Author/Faculty</td>
<td>Program Number</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Davenport, Daniel</td>
<td>EP34, Moderator, Focused Session Speaker, MP12, MP13, MP37, MP42, P17, P23, P29, P32, EP13</td>
</tr>
<tr>
<td>Davies, Mark G</td>
<td></td>
</tr>
<tr>
<td>Davila-Santini, Luis R</td>
<td>MP8</td>
</tr>
<tr>
<td>Davis, Barbara H</td>
<td>P18</td>
</tr>
<tr>
<td>Day, Steven</td>
<td>P42</td>
</tr>
<tr>
<td>D’Ayala, Marcus</td>
<td></td>
</tr>
<tr>
<td>Dayama, Anand</td>
<td>MP26</td>
</tr>
<tr>
<td>Deaton, David H</td>
<td>MP23</td>
</tr>
<tr>
<td>Deeb, GM</td>
<td></td>
</tr>
<tr>
<td>Degenholtz, Howard</td>
<td>11</td>
</tr>
<tr>
<td>Deitch, Jonathan</td>
<td>P6, P37</td>
</tr>
<tr>
<td>Dennis, James W</td>
<td>EP3</td>
</tr>
<tr>
<td>DerDerian, Trevor</td>
<td>P33</td>
</tr>
<tr>
<td>DeRubertis, Brian G</td>
<td>EP14</td>
</tr>
<tr>
<td>Desai, Nimesh</td>
<td>15</td>
</tr>
<tr>
<td>Desikan, Sarasijhaa</td>
<td>MP34</td>
</tr>
<tr>
<td>Dexter, David J</td>
<td>SIG Speaker, MP29</td>
</tr>
<tr>
<td>Dietzek, Alan M</td>
<td>Moderator, P38</td>
</tr>
<tr>
<td>Dimick, Justin B</td>
<td>P3</td>
</tr>
<tr>
<td>DiMuzio, Paul</td>
<td>EP8</td>
</tr>
<tr>
<td>Dodson, Thomas</td>
<td>MP26, EP28</td>
</tr>
<tr>
<td>Dombrovskiy, Viktor Y</td>
<td>MP7</td>
</tr>
<tr>
<td>Donovan, Michael A</td>
<td>P2</td>
</tr>
<tr>
<td>Doros, Gheorghe</td>
<td>MP36</td>
</tr>
<tr>
<td>Dosluoglu, Hasan H</td>
<td>MP39</td>
</tr>
<tr>
<td>Doyle, Adam J</td>
<td>MP11</td>
</tr>
<tr>
<td>Dryjeski, Maciej L</td>
<td>MP39</td>
</tr>
<tr>
<td>Dudkiewicz, Michael</td>
<td>MP28</td>
</tr>
<tr>
<td>Dueck, Andrew</td>
<td>MP56, EP17</td>
</tr>
<tr>
<td>Duncan, Audra A</td>
<td>Moderator, 16, MP30, MP35, MP42</td>
</tr>
<tr>
<td>Duran, Cassidy A</td>
<td>SIG Speaker, MP42, P2</td>
</tr>
<tr>
<td>Durinka, Joel</td>
<td>EP11</td>
</tr>
<tr>
<td>Dvoracek, Libor</td>
<td>MP50</td>
</tr>
<tr>
<td>Edwards, Matthew S</td>
<td>P28</td>
</tr>
<tr>
<td>Ehlert, Ryan A</td>
<td>EP15</td>
</tr>
<tr>
<td>Eidt, John F</td>
<td>MP34, P12</td>
</tr>
<tr>
<td>Eisenberg, Joshua</td>
<td>EP8</td>
</tr>
<tr>
<td>El Sayed, Hossm</td>
<td>P23</td>
</tr>
<tr>
<td>Elhelali, Ala</td>
<td>EP24</td>
</tr>
<tr>
<td>Eliason, Jonathan L</td>
<td>MP23, EP27</td>
</tr>
<tr>
<td>Ellozy, Sharif H</td>
<td>MP3, P7, P27</td>
</tr>
<tr>
<td>Elmore, James R</td>
<td>MP33</td>
</tr>
<tr>
<td>El-Sayed, Hossm</td>
<td>P17</td>
</tr>
<tr>
<td>Emmett, Mary</td>
<td>P30</td>
</tr>
<tr>
<td>Author/Faculty</td>
<td>Program Number</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Endean, Eric</td>
<td>EP34, EP38</td>
</tr>
<tr>
<td>Erzurum, Victor</td>
<td>7, MP44</td>
</tr>
<tr>
<td>Escobar, Guillermo A</td>
<td>EP27</td>
</tr>
<tr>
<td>Estrada, Mark</td>
<td>EP19</td>
</tr>
<tr>
<td>Estrella, Anthony L</td>
<td>MP57, EP2</td>
</tr>
<tr>
<td>Erkin, Yana</td>
<td>MP1, MP31</td>
</tr>
<tr>
<td>Evangelisti, Gisberto</td>
<td>21</td>
</tr>
<tr>
<td>Fairman, Ronald M</td>
<td>15, 17, 18, MP31, P5</td>
</tr>
<tr>
<td>Fanciullo, Dustin J</td>
<td>MP11</td>
</tr>
<tr>
<td>Fankhauser, Grant T</td>
<td>EP7</td>
</tr>
<tr>
<td>Farber, Mark A</td>
<td>12, Moderator</td>
</tr>
<tr>
<td>Farber, Alik</td>
<td>MP36</td>
</tr>
<tr>
<td>Faries, Peter L</td>
<td>MP3, P7, P27</td>
</tr>
<tr>
<td>Farrington, Woodrow J</td>
<td>14</td>
</tr>
<tr>
<td>Fayad, Ziad</td>
<td>P4</td>
</tr>
<tr>
<td>Feezor, Robert J</td>
<td>6, 13, MP22</td>
</tr>
<tr>
<td>Ferikes, Alex J</td>
<td>EP15</td>
</tr>
<tr>
<td>Ferraris, Victor</td>
<td>EP34</td>
</tr>
<tr>
<td>Fillinger, Mark</td>
<td>MP25, P1</td>
</tr>
<tr>
<td>Flohr, Tanya R</td>
<td>P20</td>
</tr>
<tr>
<td>Fowl, Richard J</td>
<td>EP7</td>
</tr>
<tr>
<td>Franklin, David P</td>
<td>MP33</td>
</tr>
<tr>
<td>Friese, Jeremy L</td>
<td>MP35</td>
</tr>
<tr>
<td>Froelich, James B</td>
<td>SVM Speaker</td>
</tr>
<tr>
<td>Gahtan, Vivian</td>
<td>Moderator</td>
</tr>
<tr>
<td>Galanis, Taki</td>
<td>EP8</td>
</tr>
<tr>
<td>Garcia-Toca, Manuel</td>
<td>MP21, EP19</td>
</tr>
<tr>
<td>Gargiulo, Nicholas J</td>
<td>MP1, MP31</td>
</tr>
<tr>
<td>Garvin, Robert P</td>
<td>MP33</td>
</tr>
<tr>
<td>Ghanami, Racheed</td>
<td>EP21</td>
</tr>
<tr>
<td>Gholibekian, Simin</td>
<td>MP15</td>
</tr>
<tr>
<td>Giannoukas, Athanasios</td>
<td>EP18</td>
</tr>
<tr>
<td>Giglia, Joseph S</td>
<td>Program Committee Chair, Moderator, SIG Speaker, 12</td>
</tr>
<tr>
<td>Gilani, Ramyar</td>
<td>SIG Speaker</td>
</tr>
<tr>
<td>Giles, Kristina A</td>
<td>MP43</td>
</tr>
<tr>
<td>Gillespie, David L</td>
<td>MP11</td>
</tr>
<tr>
<td>Gillis, Kathleen</td>
<td>9</td>
</tr>
<tr>
<td>Girotti, Micah</td>
<td>MP23</td>
</tr>
<tr>
<td>Glaser, Julia D</td>
<td>4</td>
</tr>
<tr>
<td>Gloczukzi, Peter</td>
<td>16, MP30, MP35</td>
</tr>
<tr>
<td>Goldman, Kenneth</td>
<td>EP10</td>
</tr>
<tr>
<td>Goldstein, Kenneth</td>
<td>MP8</td>
</tr>
<tr>
<td>Gomero-Cure, Wadi</td>
<td>EP4</td>
</tr>
<tr>
<td>Goodman, David C</td>
<td>P1</td>
</tr>
<tr>
<td>Goodeney, Philip P</td>
<td>2, MP22, P1, P16</td>
</tr>
<tr>
<td>Author/Faculty</td>
<td>Program Number</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Goppelt, Andreas</td>
<td>EP3</td>
</tr>
<tr>
<td>Graham, Ashley R</td>
<td>21, P22</td>
</tr>
<tr>
<td>Graham, Alan M</td>
<td>MP7</td>
</tr>
<tr>
<td>Gray, John L</td>
<td>MP33</td>
</tr>
<tr>
<td>Green, Robert A</td>
<td>MP9</td>
</tr>
<tr>
<td>Grego, Franco</td>
<td>P9</td>
</tr>
<tr>
<td>Grigorian, Ani</td>
<td>EP3</td>
</tr>
<tr>
<td>Hacker, Robert I</td>
<td>P13, EP26</td>
</tr>
<tr>
<td>Hagspiel, Klaus</td>
<td>P20</td>
</tr>
<tr>
<td>Hamada, Nader</td>
<td>MP14</td>
</tr>
<tr>
<td>Hamby, Blake A</td>
<td>MP52</td>
</tr>
<tr>
<td>Hamdan, Allen D</td>
<td>4, MP5, MP43, EP12, EP29</td>
</tr>
<tr>
<td>Han, Sukgu</td>
<td>MP47</td>
</tr>
<tr>
<td>Han, Daniel</td>
<td>P7</td>
</tr>
<tr>
<td>Hansen, Kimberely J</td>
<td>P28, EP1, EP21</td>
</tr>
<tr>
<td>Harris, Linda M</td>
<td>MP39</td>
</tr>
<tr>
<td>Hassoun, Heitham</td>
<td>MP40</td>
</tr>
<tr>
<td>Hector, Ferral</td>
<td>EP36, EP41</td>
</tr>
<tr>
<td>Herdrich, Benjamin J</td>
<td>MP31</td>
</tr>
<tr>
<td>Hernandez, Diego</td>
<td>P41</td>
</tr>
<tr>
<td>Herscu, Gabriel</td>
<td>MP47</td>
</tr>
<tr>
<td>Hershberger, Richard C</td>
<td>P24</td>
</tr>
<tr>
<td>Hess, Philip J</td>
<td>13</td>
</tr>
<tr>
<td>Higgins, Jonathan A</td>
<td>MP20, MP46, P11</td>
</tr>
<tr>
<td>Higuera, Adriana J</td>
<td>MP16, MP51, P25</td>
</tr>
<tr>
<td>Hill, Andrew</td>
<td>MP27</td>
</tr>
<tr>
<td>Hines, Kyle M</td>
<td>EP35</td>
</tr>
<tr>
<td>Hislop, Sean J</td>
<td>MP11</td>
</tr>
<tr>
<td>Hitchner, Elizabeth</td>
<td>9, MP17</td>
</tr>
<tr>
<td>Hoehn, Melanie R</td>
<td>1</td>
</tr>
<tr>
<td>Hodgson, Kim J</td>
<td>Moderator</td>
</tr>
<tr>
<td>Holden, Andrew</td>
<td>MP27</td>
</tr>
<tr>
<td>Holleman, Jeremiah</td>
<td>12</td>
</tr>
<tr>
<td>Hossain, Monir</td>
<td>MP57</td>
</tr>
<tr>
<td>Hsu, Richard</td>
<td>P38</td>
</tr>
<tr>
<td>Huang, Guanmengqian</td>
<td>EP2</td>
</tr>
<tr>
<td>Huang, Grace</td>
<td>MP47</td>
</tr>
<tr>
<td>Huber, Thomas S</td>
<td>6, MP22</td>
</tr>
<tr>
<td>Hunt, Peter</td>
<td>EP36, EP41</td>
</tr>
<tr>
<td>Hunt, Kyle</td>
<td>MP56</td>
</tr>
<tr>
<td>Hurie, Justin B</td>
<td>MP21, EP1, EP27</td>
</tr>
<tr>
<td>Hurks, Rob</td>
<td>4, EP12, EP29</td>
</tr>
<tr>
<td>Huynh, Tam T</td>
<td>EP13</td>
</tr>
<tr>
<td>Huynh, Huynh T</td>
<td>MP13</td>
</tr>
</tbody>
</table>
SCVS • 40TH ANNUAL SYMPOSIUM ON VASCULAR SURGERY

<table>
<thead>
<tr>
<th>Author/Faculty</th>
<th>Program Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hynes, Niamh</td>
<td>MP14, EP24</td>
</tr>
<tr>
<td>Iacocca, Anthony</td>
<td>EP40</td>
</tr>
<tr>
<td>Igo, Stephen</td>
<td>P2</td>
</tr>
<tr>
<td>Indes, Jeffrey</td>
<td>EP11</td>
</tr>
<tr>
<td>Jahoria, Sinan</td>
<td>EP14</td>
</tr>
<tr>
<td>Jackson, Benjamin M</td>
<td>15, 18, MP31, P2, P5</td>
</tr>
<tr>
<td>Jacobowitz, Glenn R</td>
<td>10, EP10</td>
</tr>
<tr>
<td>Jacobs, Chad</td>
<td>EP36, EP41</td>
</tr>
<tr>
<td>Jacobs, Donald L</td>
<td>P15</td>
</tr>
<tr>
<td>Jadlowiec, Caroline</td>
<td>8</td>
</tr>
<tr>
<td>Jen, Henry</td>
<td>MP3</td>
</tr>
<tr>
<td>Jen, James</td>
<td>MP3</td>
</tr>
<tr>
<td>Jim, Jeffrey</td>
<td>EP31</td>
</tr>
<tr>
<td>Jimenez, Juan C</td>
<td>EP14</td>
</tr>
<tr>
<td>Johnston, William F</td>
<td>MP10, MP24, P20, P26</td>
</tr>
<tr>
<td>Jordan, William D</td>
<td>I4, MP25</td>
</tr>
<tr>
<td>Joseph, Grisafi</td>
<td>EP11</td>
</tr>
<tr>
<td>Kalra, Manju</td>
<td>16, MP30, MP35</td>
</tr>
<tr>
<td>Karmonik, Christof</td>
<td>MP42</td>
</tr>
<tr>
<td>Karwowski, John</td>
<td>P22</td>
</tr>
<tr>
<td>Kashyap, Vikram S</td>
<td>EP33</td>
</tr>
<tr>
<td>Kasirajan, Karthikeshwar</td>
<td>EP28</td>
</tr>
<tr>
<td>Kern, John A</td>
<td>MP10, MP24, P20, P26</td>
</tr>
<tr>
<td>Ketteler, Erika</td>
<td>SIG Speaker</td>
</tr>
<tr>
<td>Khan, Moshin</td>
<td>P40</td>
</tr>
<tr>
<td>Khoury, Thomas</td>
<td>MP54</td>
</tr>
<tr>
<td>Kiguchi, Misaki</td>
<td>MP38</td>
</tr>
<tr>
<td>Kim, Jason K</td>
<td>MP11</td>
</tr>
<tr>
<td>Kim, Justine</td>
<td>MP38</td>
</tr>
<tr>
<td>Kim, In-Kyong</td>
<td>MP4</td>
</tr>
<tr>
<td>Kinning, Alison J</td>
<td>P34</td>
</tr>
<tr>
<td>Klodell, Charles T</td>
<td>13</td>
</tr>
<tr>
<td>Korepta, Lindsey</td>
<td>P14</td>
</tr>
<tr>
<td>Kougiannis, Panagiotis</td>
<td>MP32</td>
</tr>
<tr>
<td>Kraemer, Kevin L</td>
<td>11</td>
</tr>
<tr>
<td>Kraiss, Larry W</td>
<td>2</td>
</tr>
<tr>
<td>Krol, Emilia</td>
<td>SIG Speaker, P38</td>
</tr>
<tr>
<td>Kron, Irving L</td>
<td>P20, P26</td>
</tr>
<tr>
<td>Kwolek, Christopher J</td>
<td>MP49</td>
</tr>
<tr>
<td>Lakin, Ryan O</td>
<td>EP33</td>
</tr>
<tr>
<td>Lall, Purandath</td>
<td>MP39</td>
</tr>
<tr>
<td>LaMuraglia, Glenn M</td>
<td>MP49</td>
</tr>
<tr>
<td>Lancaster, Robert T</td>
<td>MP49</td>
</tr>
<tr>
<td>Lane, Barton</td>
<td>MP15, MP17</td>
</tr>
<tr>
<td>Author/Faculty</td>
<td>Program Number</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Lapar, Damien J</td>
<td>MP10</td>
</tr>
<tr>
<td>Laredo, James</td>
<td>5</td>
</tr>
<tr>
<td>Lawrence, Peter</td>
<td>Focused Session Speaker, P19, EP14</td>
</tr>
<tr>
<td>Lazar, Eliot J</td>
<td>MP9</td>
</tr>
<tr>
<td>Leake, Samuel S</td>
<td>EP2</td>
</tr>
<tr>
<td>Lee, Byung-Boong</td>
<td>5</td>
</tr>
<tr>
<td>Lee, Justin</td>
<td>P18, P39</td>
</tr>
<tr>
<td>Lee, Allen</td>
<td>P24</td>
</tr>
<tr>
<td>Lee, Jason T</td>
<td>Focused Session Speaker, EP31</td>
</tr>
<tr>
<td>Lee, William</td>
<td>SIG Speaker</td>
</tr>
<tr>
<td>Leers, Steven A</td>
<td>Moderator</td>
</tr>
<tr>
<td>Levin, Elizabeth S</td>
<td>MP9</td>
</tr>
<tr>
<td>Lew, Wesley K</td>
<td>P19, EP14</td>
</tr>
<tr>
<td>Li, Xin</td>
<td>8</td>
</tr>
<tr>
<td>Liang, Patric</td>
<td>EP12</td>
</tr>
<tr>
<td>Liapis, Christos</td>
<td>International Panelist</td>
</tr>
<tr>
<td>Lin, Peter H</td>
<td>MP32</td>
</tr>
<tr>
<td>Lind, Benjamin</td>
<td>EP36, EP41</td>
</tr>
<tr>
<td>Lipsitz, Evan C</td>
<td>Moderator, MP1, P31</td>
</tr>
<tr>
<td>Lo, Ruby C</td>
<td>MP5, EP29</td>
</tr>
<tr>
<td>Lohr, Joann M</td>
<td>Moderator, MP45</td>
</tr>
<tr>
<td>Long, Graham W</td>
<td>EP37</td>
</tr>
<tr>
<td>Lookstein, Robert A</td>
<td>MP3</td>
</tr>
<tr>
<td>Loretz, Lorraine</td>
<td>MP6</td>
</tr>
<tr>
<td>Loss, George E</td>
<td>MP52</td>
</tr>
<tr>
<td>Louwers, Lisa M</td>
<td>EP37</td>
</tr>
<tr>
<td>Lovett, Megan</td>
<td>MP55</td>
</tr>
<tr>
<td>Lowery, Robert</td>
<td>EP4</td>
</tr>
<tr>
<td>Lucas, Lee</td>
<td>P1</td>
</tr>
<tr>
<td>Lucia, Victoria C</td>
<td>EP40</td>
</tr>
<tr>
<td>Lumsden, Alan B</td>
<td>Moderator, MP12, MP37, MP40, MP42, P2, P17, P23, P32</td>
</tr>
<tr>
<td>Lys-Dobradin, Ivan A</td>
<td>18</td>
</tr>
<tr>
<td>Macedo, Thanila A</td>
<td>16, MP30, MP48</td>
</tr>
<tr>
<td>Madamanchi, Chaitanya</td>
<td>EP15</td>
</tr>
<tr>
<td>Mainieri, Lisa</td>
<td>MP9</td>
</tr>
<tr>
<td>Makaroun, Michel S</td>
<td>President, Program Committee, 1, 11, 19, MP38</td>
</tr>
<tr>
<td>Maldonado, Thomas</td>
<td>10, MP28, MP29</td>
</tr>
<tr>
<td>Malek, Junaid Y</td>
<td>MP49</td>
</tr>
<tr>
<td>Malgor, Rafael D</td>
<td>P8</td>
</tr>
<tr>
<td>Malinowski, Michael</td>
<td>SIG Speaker</td>
</tr>
<tr>
<td>Mansour, M. Ashraf</td>
<td>MP18, P14</td>
</tr>
<tr>
<td>March, Robert</td>
<td>EP36</td>
</tr>
<tr>
<td>Marin, Michael L</td>
<td>MP3, P7, P27</td>
</tr>
<tr>
<td>Marine, Leopoldo</td>
<td>MP27</td>
</tr>
<tr>
<td>Author/Faculty</td>
<td>Program Number</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Marone, Luke K</td>
<td>Moderator, 1, 19, MP38</td>
</tr>
<tr>
<td>Marshall, Goldin</td>
<td>EP36</td>
</tr>
<tr>
<td>Martin, Tomas D</td>
<td>13</td>
</tr>
<tr>
<td>Martinez, Michael</td>
<td>SIG Speaker</td>
</tr>
<tr>
<td>Masterson, Loren L</td>
<td>P35</td>
</tr>
<tr>
<td>Matous, Pavel</td>
<td>MP50</td>
</tr>
<tr>
<td>Matsumura, Jon</td>
<td>12, MP25</td>
</tr>
<tr>
<td>Matthews, Thomas C</td>
<td>14</td>
</tr>
<tr>
<td>Matthews, Mika</td>
<td>MP45</td>
</tr>
<tr>
<td>Matyla, Robina</td>
<td>MP5</td>
</tr>
<tr>
<td>Maytesyan, Derenik</td>
<td>3</td>
</tr>
<tr>
<td>McClure, Amanda</td>
<td>P14</td>
</tr>
<tr>
<td>McCormack, Jane</td>
<td>P8</td>
</tr>
<tr>
<td>McNamary, Ryan M</td>
<td>1</td>
</tr>
<tr>
<td>McGarvey, Michael L</td>
<td>15, P5</td>
</tr>
<tr>
<td>McGilvray, Ian</td>
<td>P36</td>
</tr>
<tr>
<td>McGraw, Daniel J</td>
<td>EP35</td>
</tr>
<tr>
<td>McIntyre, Thomas</td>
<td>EP23</td>
</tr>
<tr>
<td>McKinsey, James F</td>
<td>20, 21, MP4</td>
</tr>
<tr>
<td>McKusick, Michael A</td>
<td>MP35</td>
</tr>
<tr>
<td>McLaugherty, Robert B</td>
<td>Program Committee, Moderator, Focused</td>
</tr>
<tr>
<td>McMillan, William</td>
<td>MP25</td>
</tr>
<tr>
<td>McPhee, James T</td>
<td>P16</td>
</tr>
<tr>
<td>Mehta, Manish</td>
<td>17</td>
</tr>
<tr>
<td>Meier, George H</td>
<td>Moderator, Speaker</td>
</tr>
<tr>
<td>Meltzer, Andrew J</td>
<td>20, 21, MP4, P22</td>
</tr>
<tr>
<td>Menard, Matthew T</td>
<td>MP36, P16</td>
</tr>
<tr>
<td>Menegolo, Mirko</td>
<td>P9</td>
</tr>
<tr>
<td>Mertens, Renato</td>
<td>MP27</td>
</tr>
<tr>
<td>Messina, Louis M</td>
<td>MP6</td>
</tr>
<tr>
<td>Messiner, Ryan</td>
<td>SIG Speaker</td>
</tr>
<tr>
<td>Methodius Rayford, Walaya</td>
<td>EP22</td>
</tr>
<tr>
<td>Miller, Charles C</td>
<td>EP2</td>
</tr>
<tr>
<td>Miller, Peter</td>
<td>P18</td>
</tr>
<tr>
<td>Minion, David J</td>
<td>EP34, EP38</td>
</tr>
<tr>
<td>Mirza, Aleem K</td>
<td>MP46</td>
</tr>
<tr>
<td>Mix, Doran</td>
<td>P42</td>
</tr>
<tr>
<td>Moain, Sina</td>
<td>MP25</td>
</tr>
<tr>
<td>Modak, Asmita</td>
<td>P30</td>
</tr>
<tr>
<td>Modrall, J Gregory</td>
<td>MP34, P12, P24</td>
</tr>
<tr>
<td>Monlon, Elena</td>
<td>P9</td>
</tr>
<tr>
<td>Money, Samuel R</td>
<td>Moderator, EP7</td>
</tr>
<tr>
<td>Moos, John</td>
<td>MP47</td>
</tr>
</tbody>
</table>
Author/Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Program Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morasch, Mark D</td>
<td>SIG Speaker, MP21, EP19</td>
</tr>
<tr>
<td>Morrissey, Nicholas J</td>
<td>MP9</td>
</tr>
<tr>
<td>Mortenson, Daniel</td>
<td>MP18</td>
</tr>
<tr>
<td>Mosely, Carolyn</td>
<td>P11</td>
</tr>
<tr>
<td>Moser, William</td>
<td>MP31</td>
</tr>
<tr>
<td>Moudgill, Neil</td>
<td>SIG Speaker, EP8</td>
</tr>
<tr>
<td>Moursi, Mohammad M</td>
<td>MP34, P10, P12</td>
</tr>
<tr>
<td>Mousa, Albeir</td>
<td>P30</td>
</tr>
<tr>
<td>Mujib, Marjan</td>
<td>14</td>
</tr>
<tr>
<td>Muluk, Satish</td>
<td>EP3, EP5</td>
</tr>
<tr>
<td>Mung, Jay</td>
<td>MP47</td>
</tr>
<tr>
<td>Mureebe, Leila</td>
<td>Moderator</td>
</tr>
<tr>
<td>Murphy, Erin H</td>
<td>MP31</td>
</tr>
<tr>
<td>Mushit, Sirisha</td>
<td>MP46</td>
</tr>
<tr>
<td>Mussa, Firas</td>
<td>MP29</td>
</tr>
<tr>
<td>Nandivada, Prathima</td>
<td>MP43</td>
</tr>
<tr>
<td>Naoum, Joseph J</td>
<td>MP12, MP37, MP40, P17, P23, P29, P32, EP13</td>
</tr>
<tr>
<td>Napolitano, Massimo M</td>
<td>P21</td>
</tr>
<tr>
<td>Nathan, Derek P</td>
<td>18</td>
</tr>
<tr>
<td>Naughton, Peter A</td>
<td>MP21, EP19</td>
</tr>
<tr>
<td>Nelson, Peter R</td>
<td>6, MP22</td>
</tr>
<tr>
<td>Netzley, Robert</td>
<td>7, MP44</td>
</tr>
<tr>
<td>Neville, Richard F</td>
<td>Focused Session Speaker, 5</td>
</tr>
<tr>
<td>Nizami, Shobha</td>
<td>P29</td>
</tr>
<tr>
<td>Northcutt, Ashley</td>
<td>MP41</td>
</tr>
<tr>
<td>Norton, Patrick T</td>
<td>P20</td>
</tr>
<tr>
<td>O’Connor, Richard</td>
<td>P36</td>
</tr>
<tr>
<td>O’Connor, David</td>
<td>P7</td>
</tr>
<tr>
<td>Oderich, Gustavo S</td>
<td>16, MP2, MP30, MP35, MP48</td>
</tr>
<tr>
<td>O’Donnell, Sean</td>
<td>EP4</td>
</tr>
<tr>
<td>O’Keeffe, Shane D</td>
<td>EP38</td>
</tr>
<tr>
<td>Osborne, Nicholas H</td>
<td>P3</td>
</tr>
<tr>
<td>Outcault, Robert</td>
<td>EP10</td>
</tr>
<tr>
<td>Palit, Tapash</td>
<td>SIG Speaker</td>
</tr>
<tr>
<td>Panneton, Jean M</td>
<td>MP20, MP46, P11</td>
</tr>
<tr>
<td>Papoyan, Simon A</td>
<td>3, EP25</td>
</tr>
<tr>
<td>Paranjape, Charudutt</td>
<td>MP44</td>
</tr>
<tr>
<td>Parker, Frank M</td>
<td>EP15</td>
</tr>
<tr>
<td>Parmley, Michael</td>
<td>P30</td>
</tr>
<tr>
<td>Passman, Marc A</td>
<td>14</td>
</tr>
<tr>
<td>Patel, Mitul S</td>
<td>MP13</td>
</tr>
<tr>
<td>Patel, Himanshu J</td>
<td>MP23</td>
</tr>
<tr>
<td>Patel, Virendra I</td>
<td>MP49</td>
</tr>
<tr>
<td>Patel, Mitul S</td>
<td>P17, P23, P32</td>
</tr>
</tbody>
</table>

352
<table>
<thead>
<tr>
<th>Author/Faculty</th>
<th>Program Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patrizia, Lattuada</td>
<td>MP19</td>
</tr>
<tr>
<td>Patterson, Mark A</td>
<td>14</td>
</tr>
<tr>
<td>Patterson, Will</td>
<td>P30</td>
</tr>
<tr>
<td>Pavela, James</td>
<td>MP20</td>
</tr>
<tr>
<td>Peden, Eric K</td>
<td>MP12, MP13, MP37, MP42, P17, P23, P29, P32, EP13</td>
</tr>
<tr>
<td>Pentiak, Patricia</td>
<td>P35</td>
</tr>
<tr>
<td>Pereira, Alexandre A</td>
<td>16, MP2, MP30, MP35, MP48</td>
</tr>
<tr>
<td>Peter, Gloviczki</td>
<td>EP7</td>
</tr>
<tr>
<td>Peterson, Gary J</td>
<td>P15</td>
</tr>
<tr>
<td>Phade, Sachin V</td>
<td>MP21</td>
</tr>
<tr>
<td>Phangureh, Varinder</td>
<td>P7</td>
</tr>
<tr>
<td>Phillips, Daniel B</td>
<td>P42</td>
</tr>
<tr>
<td>Piazza, Michele</td>
<td>P9</td>
</tr>
<tr>
<td>Pismisisis, George</td>
<td>MP32</td>
</tr>
<tr>
<td>Ploder, Bettina</td>
<td>EP3</td>
</tr>
<tr>
<td>Plummer, Dahlia</td>
<td>P38</td>
</tr>
<tr>
<td>Pochettino, Alberto</td>
<td>MP31</td>
</tr>
<tr>
<td>Poindexter, James M</td>
<td>EP22</td>
</tr>
<tr>
<td>Politano, Amani D</td>
<td>P26</td>
</tr>
<tr>
<td>Pomposelli, Frank B</td>
<td>4, MP5, MP43, EP12, EP29</td>
</tr>
<tr>
<td>Poorvu, Eli</td>
<td>MP6</td>
</tr>
<tr>
<td>Powell, Charles S</td>
<td>EP15</td>
</tr>
<tr>
<td>Powell, Richard J</td>
<td>P1</td>
</tr>
<tr>
<td>Presch, Isabella</td>
<td>EP3</td>
</tr>
<tr>
<td>Protack, Clinton D</td>
<td>8</td>
</tr>
<tr>
<td>Prueter, James C</td>
<td>MP54</td>
</tr>
<tr>
<td>Pu, Qinghua</td>
<td>P6, P37</td>
</tr>
<tr>
<td>Quinones-Baldrich, William J</td>
<td>Program Committee, Moderator</td>
</tr>
<tr>
<td>Raghinaru, Daniel</td>
<td>6</td>
</tr>
<tr>
<td>Rajani, Ravi</td>
<td>MP26</td>
</tr>
<tr>
<td>Ramirez, Daniel E</td>
<td>EP16</td>
</tr>
<tr>
<td>Rao, Atul</td>
<td>EP8</td>
</tr>
<tr>
<td>Ratner, Ross</td>
<td>MP8</td>
</tr>
<tr>
<td>Ravin, Reid</td>
<td>MP9</td>
</tr>
<tr>
<td>Reeves, James G</td>
<td>MP26, EP28</td>
</tr>
<tr>
<td>Reifsnyder, Thomas</td>
<td>SIG Speaker</td>
</tr>
<tr>
<td>Rhee, Robert Y</td>
<td>1, 19, MP38</td>
</tr>
<tr>
<td>Riesenman, Paul J</td>
<td>EP28</td>
</tr>
<tr>
<td>Riles, Thomas S</td>
<td>10</td>
</tr>
<tr>
<td>Roche-Nagle, Graham</td>
<td>P36</td>
</tr>
<tr>
<td>Rockman, Caron</td>
<td>10, MP28, MP29</td>
</tr>
<tr>
<td>Rodriguez, Heron</td>
<td>EP19</td>
</tr>
<tr>
<td>Rosen, Allyson</td>
<td>9, MP15</td>
</tr>
<tr>
<td>Rosenthal, David</td>
<td>EP22</td>
</tr>
<tr>
<td>Author/Faculty</td>
<td>Program Number</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Rosero, Eric B</td>
<td>MP16, MP51, P25</td>
</tr>
<tr>
<td>Rossi, Peter</td>
<td>SIG Speaker</td>
</tr>
<tr>
<td>Roussas, Nikolaos</td>
<td>EP18</td>
</tr>
<tr>
<td>Rovin, Joshua</td>
<td>MP25</td>
</tr>
<tr>
<td>Rowe, Vincent L</td>
<td>Focused Session Speaker, EP20</td>
</tr>
<tr>
<td>Roy, Trisha</td>
<td>P36</td>
</tr>
<tr>
<td>Rubinstein, Chen</td>
<td>EP38</td>
</tr>
<tr>
<td>Safa, Toufic</td>
<td>EP26</td>
</tr>
<tr>
<td>Safi, Safi J</td>
<td>EP2</td>
</tr>
<tr>
<td>Safi, Hazim J</td>
<td>MP57</td>
</tr>
<tr>
<td>Saha, Sibu P</td>
<td>EP34</td>
</tr>
<tr>
<td>Salepsis, Vasileios</td>
<td>EP18</td>
</tr>
<tr>
<td>Sales, Clifford M</td>
<td>EP6</td>
</tr>
<tr>
<td>Sampson, James B</td>
<td>14</td>
</tr>
<tr>
<td>Samson, Russell H</td>
<td>Moderator</td>
</tr>
<tr>
<td>Sanchez, Luis A</td>
<td>EP31</td>
</tr>
<tr>
<td>Sandhu, Harleen K</td>
<td>EP2</td>
</tr>
<tr>
<td>Santos, Angelo</td>
<td>EP5</td>
</tr>
<tr>
<td>Sartorius, Jennifer A</td>
<td>MP33</td>
</tr>
<tr>
<td>Satiani, Bhagwan</td>
<td>MP45</td>
</tr>
<tr>
<td>Saunders, Scott S</td>
<td>MP37</td>
</tr>
<tr>
<td>Scali, Salvatore T</td>
<td>6, 13, MP22</td>
</tr>
<tr>
<td>Schanzer, Andres</td>
<td>2, MP6, P16</td>
</tr>
<tr>
<td>Schenck, Worthington</td>
<td>EP3</td>
</tr>
<tr>
<td>Scher, Larry A</td>
<td>MP1, P31</td>
</tr>
<tr>
<td>Schermerhorn, Marc L</td>
<td>4, MP5, MP43, EP12, EP29</td>
</tr>
<tr>
<td>Schneider, Darren B</td>
<td>20, 21, P22</td>
</tr>
<tr>
<td>Schneider, Peter</td>
<td>Focused Session Speaker</td>
</tr>
<tr>
<td>Schold, Jesse D</td>
<td>EP33</td>
</tr>
<tr>
<td>Schor, Jonathan</td>
<td>P6, P37</td>
</tr>
<tr>
<td>Schutzer, Richard</td>
<td>EP32</td>
</tr>
<tr>
<td>Schwartz, Karl Q</td>
<td>P42</td>
</tr>
<tr>
<td>Semaan, Elie</td>
<td>P4</td>
</tr>
<tr>
<td>Settembrini, Alberto</td>
<td>MP19</td>
</tr>
<tr>
<td>Settembrini, Piergiorgio</td>
<td>MP19</td>
</tr>
<tr>
<td>Shah, Dipan J</td>
<td>MP42</td>
</tr>
<tr>
<td>Shang, Eric K</td>
<td>18</td>
</tr>
<tr>
<td>Shapiro, Marc J</td>
<td>P8</td>
</tr>
<tr>
<td>Shea, Art</td>
<td>MP6</td>
</tr>
<tr>
<td>Shelton, Kyla R</td>
<td>P12</td>
</tr>
<tr>
<td>Sheth, Sharvil U</td>
<td>P21</td>
</tr>
<tr>
<td>Shi, Zhen Yu</td>
<td>MP38</td>
</tr>
<tr>
<td>Shrikhande, Gautam V</td>
<td>20, MP4</td>
</tr>
<tr>
<td>Shue, Bing</td>
<td>EP8</td>
</tr>
<tr>
<td>Sidawy, Anton N</td>
<td>5</td>
</tr>
<tr>
<td>Author/Faculty</td>
<td>Program Number</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Simms, H. Hank</td>
<td>EP11</td>
</tr>
<tr>
<td>Simonian, Gregory T</td>
<td>P21</td>
</tr>
<tr>
<td>Singh, Michael J</td>
<td>MP11</td>
</tr>
<tr>
<td>Singh, Moninder M</td>
<td>P29</td>
</tr>
<tr>
<td>Singh, Kuldeep</td>
<td>P6, P37</td>
</tr>
<tr>
<td>Siracuse, Jeffrey J</td>
<td>MP43</td>
</tr>
<tr>
<td>Slaikeu, Jason D</td>
<td>MP18</td>
</tr>
<tr>
<td>Smeds, Matthew R</td>
<td>P15</td>
</tr>
<tr>
<td>Smith, Taylor A</td>
<td>MP52, EP16</td>
</tr>
<tr>
<td>Smith, Stephen T</td>
<td>P24</td>
</tr>
<tr>
<td>Smolock, Christopher J</td>
<td>SIG Speaker, MP37, MP40, P17, P23</td>
</tr>
<tr>
<td>Sorial, Ehab S</td>
<td>EP38</td>
</tr>
<tr>
<td>Spanos, Konstantinos</td>
<td>EP18</td>
</tr>
<tr>
<td>Spyris, Constantinos T</td>
<td>P27</td>
</tr>
<tr>
<td>Stableford, Jennifer A</td>
<td>P31</td>
</tr>
<tr>
<td>Stadler, Petr</td>
<td>MP50</td>
</tr>
<tr>
<td>Stanley, Gregory A</td>
<td>P24</td>
</tr>
<tr>
<td>Starnes, Benjamin</td>
<td>Focused Session Speaker, 12</td>
</tr>
<tr>
<td>Stassen, Nicole A</td>
<td>MP11</td>
</tr>
<tr>
<td>Steerman, Samuel N</td>
<td>MP20, MP46, P11</td>
</tr>
<tr>
<td>Sternbergh, III, W. Charles</td>
<td>Moderator, MP52, EP16</td>
</tr>
<tr>
<td>Stevens, Scott</td>
<td>12</td>
</tr>
<tr>
<td>Stevenson, William</td>
<td>P10</td>
</tr>
<tr>
<td>Sticco, Charles C</td>
<td>P6, P37</td>
</tr>
<tr>
<td>Stone, William M</td>
<td>EP7</td>
</tr>
<tr>
<td>Stone, David H</td>
<td>2, MP22, P1</td>
</tr>
<tr>
<td>Stoner, Michael C</td>
<td>EP15</td>
</tr>
<tr>
<td>Strom, Charles V</td>
<td>P39</td>
</tr>
<tr>
<td>Suckow, Bjoern D</td>
<td>2</td>
</tr>
<tr>
<td>Suggs, William D</td>
<td>MP1, P31</td>
</tr>
<tr>
<td>Sultan, Sherif</td>
<td>MP14, EP24</td>
</tr>
<tr>
<td>Sun, Lixian</td>
<td>9</td>
</tr>
<tr>
<td>Sundick, Scott</td>
<td>P7</td>
</tr>
<tr>
<td>Szeto, Wilson Y</td>
<td>MP31</td>
</tr>
<tr>
<td>Tadros, Rami O</td>
<td>P27</td>
</tr>
<tr>
<td>Tallarita, Tiziano</td>
<td>16, MP2, MP30, MP35, MP48</td>
</tr>
<tr>
<td>Tassinari, Julia</td>
<td>P39</td>
</tr>
<tr>
<td>Tassiopoulos, Apostolos K</td>
<td>P8</td>
</tr>
<tr>
<td>Taubman, Kevin</td>
<td>SIG Speaker</td>
</tr>
<tr>
<td>Taylor, Steve M</td>
<td>14</td>
</tr>
<tr>
<td>Teodorescu, Victoria J</td>
<td>P27</td>
</tr>
<tr>
<td>Threatt, Jennifer E</td>
<td>EP15</td>
</tr>
<tr>
<td>Timaran, Carlos H</td>
<td>MP16, MP51, P24, P25</td>
</tr>
<tr>
<td>Timaran, David E</td>
<td>MP16, MP51, P25</td>
</tr>
<tr>
<td>Todorov, Mina</td>
<td>P41</td>
</tr>
<tr>
<td>Tohyat, Mohammad A</td>
<td>MP57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author/Faculty</th>
<th>Program Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toma, Marisa</td>
<td>EP5</td>
</tr>
<tr>
<td>Tomasyan, Eleonora</td>
<td>EP25</td>
</tr>
<tr>
<td>Tornatore, Carlo</td>
<td>P5</td>
</tr>
<tr>
<td>Tracci, Margaret C</td>
<td>MP10, MP24, P20, P26</td>
</tr>
<tr>
<td>Travis, Lon L</td>
<td>P1</td>
</tr>
<tr>
<td>Tsilimparis, Nikolaos</td>
<td>MP26</td>
</tr>
<tr>
<td>Tye, Andrew</td>
<td>P27</td>
</tr>
<tr>
<td>Ullery, Brant W</td>
<td>15, P5</td>
</tr>
<tr>
<td>Unzeitig, Andrew</td>
<td>MP16</td>
</tr>
<tr>
<td>Upchurch, Gilbert R</td>
<td>Program Committee, Moderator, MP10, MP24, P3, P20, P26</td>
</tr>
<tr>
<td>Usoh, Fred</td>
<td>EP23</td>
</tr>
<tr>
<td>Valentine, R. James</td>
<td>MP16, MP5, P24, P25</td>
</tr>
<tr>
<td>Vandy, Frank C</td>
<td>MP23</td>
</tr>
<tr>
<td>Varble, Nicole</td>
<td>P42</td>
</tr>
<tr>
<td>Vasillas, Penny</td>
<td>8</td>
</tr>
<tr>
<td>Veeraswamy, Ravi K</td>
<td>EP28</td>
</tr>
<tr>
<td>Veith, Frank</td>
<td>MP28, MP29</td>
</tr>
<tr>
<td>Vikomerson, David</td>
<td>EP10</td>
</tr>
<tr>
<td>Vitasek, Petr</td>
<td>MP50</td>
</tr>
<tr>
<td>Vogel, Todd R</td>
<td>MP7</td>
</tr>
<tr>
<td>Vouyouka, Agekiki G</td>
<td>P7, P27</td>
</tr>
<tr>
<td>Vouzas, Antonios</td>
<td>EP18</td>
</tr>
<tr>
<td>Wagner, Jason K</td>
<td>P11</td>
</tr>
<tr>
<td>Wang, Grace J</td>
<td>15, 18, MP31, P5</td>
</tr>
<tr>
<td>Wang, Li</td>
<td>19</td>
</tr>
<tr>
<td>Weaver, Fred A</td>
<td>Moderator, MP47, EP20</td>
</tr>
<tr>
<td>Weaver, Marvin</td>
<td>P7</td>
</tr>
<tr>
<td>Webb, Travis P</td>
<td>MP33</td>
</tr>
<tr>
<td>Wellons, Eric D</td>
<td>EP22</td>
</tr>
<tr>
<td>White, Matthew</td>
<td>SIG Speaker</td>
</tr>
<tr>
<td>Wilderman, Michael J</td>
<td>P21</td>
</tr>
<tr>
<td>Williams, David M</td>
<td>MP23</td>
</tr>
<tr>
<td>Winger, Dan</td>
<td>19</td>
</tr>
<tr>
<td>Wittgen, Catherine M</td>
<td>P15</td>
</tr>
<tr>
<td>Woo, Edward Y</td>
<td>15, 18, MP31, P5</td>
</tr>
<tr>
<td>Woo, Karen</td>
<td>EP20</td>
</tr>
<tr>
<td>Woody, Jonathan D</td>
<td>MP55</td>
</tr>
<tr>
<td>Wooster, Douglas</td>
<td>MP56, EP17</td>
</tr>
<tr>
<td>Wooster, Elizabeth</td>
<td>MP56, EP17</td>
</tr>
<tr>
<td>Wright, Dennis</td>
<td>7, MP44</td>
</tr>
<tr>
<td>Wyers, Mark C</td>
<td>SIG Speaker, 4, MP5, MP43, EP12, EP29</td>
</tr>
<tr>
<td>Xenos, Eletherios S</td>
<td>EP34, EP38</td>
</tr>
<tr>
<td>Yahya, Madien</td>
<td>P38</td>
</tr>
<tr>
<td>Yakoub, Danny</td>
<td>P6</td>
</tr>
<tr>
<td>Yen, Jesse</td>
<td>MP47</td>
</tr>
<tr>
<td>Author/Faculty</td>
<td>Program Number</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Yuo, Theodore H</td>
<td>1, 11</td>
</tr>
<tr>
<td>Zayed, Mohamed</td>
<td>MP15</td>
</tr>
<tr>
<td>Zhang, Wayne W</td>
<td>MP41</td>
</tr>
<tr>
<td>Zhou, Wei</td>
<td>9, MP15, MP17</td>
</tr>
<tr>
<td>Zibari, Gazi</td>
<td>MP41</td>
</tr>
<tr>
<td>Zink, Jill</td>
<td>7, MP44</td>
</tr>
</tbody>
</table>
Record of Attendance

Wynn Las Vegas Hotel | Las Vegas, Nevada

March 13–17, 2012

Record of Attendance for Continuing Medical Education (CME) Credit

Accreditation Statement

This activity has been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education through the joint sponsorship of Ciné-Med and PPRI. Ciné-Med is accredited by the ACCME to provide continuing medical education for physicians.

Ciné-Med designated this educational activity for a maximum of 19.75 AMA PRA Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

<table>
<thead>
<tr>
<th>Session(s) Attended</th>
<th>Available Credits</th>
<th>Earned Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focused Session:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What Made Vascular News 2011</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>Scientific Session 1</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>Scientific Session 2</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>Thursday:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakfast SIG (Special Interest Group)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Scientific Session 3</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>Scientific Session 4</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Distinguished Visiting Professor Address</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>SVM Session</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Friday:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Session 5</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>International Panel</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Presidential Address</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Poster Session Round 1</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Focused Session:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pushing the Limits of Vascular Technology</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>Scientific Session 6</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Saturday:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakfast SIG (Special Interest Group)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Scientific Session 7</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Pro/Con Debate</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Poster Session Final</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Scientific Session 8</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>TOTAL HOURS (maximum 19.75 hours):</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is to certify that I, __________________________, M.D., attended the 40th Annual Symposium On Vascular Surgery in Las Vegas, Nevada from March 13–17, 2012.

THIS CARD IS YOUR PERSONAL RECORD OF ATTENDANCE FOR CONTINUING MEDICAL EDUCATION (CME) CREDIT AND SHOULD BE RETAINED BY YOU.

Please read reverse side.
PLEASE NOTE:
As a more efficient way of tracking CME credits for each attendee the Society for Clinical Vascular Surgery will send out a post-meeting survey for each attendee to fill out. Once completed this survey will link to a CME credit page listing all accredited sessions and the hours that have been allotted. You will then select the sessions you attended, based on the honor system, and it will populate an official certificate for your records. This should be used in addition to your CME card on the other side of this page.

We encourage you to study any CME regulations that affect you and write the Society for verification of attendance only when it is absolutely necessary.
MEMBERSHIP FORM

Are You Missing Out?

The SCVS website always has the most current information available regarding the Annual Symposium. Accepted abstracts are posted here long before the preliminary program brochure is even printed. Online meeting registration opens here first. Members can pay their dues via the easy online format.

All these features are announced to members via email as they become available—but to include you we need the email address where you would like to receive your SCVS notices. If you notice your listing in the Final Program Book needs to be updated, please use this form to do that as well.

(Please Print)

First Name: ____________________________ Middle Initial: __________
Last Name: ____________________________ Suffix (e.g., Jr., III) _______
Email: ________________________________

OFFICE ADDRESS
Institution: _________________________________
Street: _____________________________
City: __________ State: __________ Zip: __________
Country: ____________________________ Province: _________________
Office phone: _______________________ Office fax: ___________________

HOME ADDRESS
Street: ___________________________
City: __________ State: __________ Zip: __________
Country: ____________________________ Province: _________________
Home phone: _______________________ Home fax: ___________________
I prefer to receive my mailings at: (please circle one) HOME OFFICE

Please leave this form with the SCVS Registration Desk.
Or fax to: 978-524-0498
SCVS Membership Update
500 Cummings Center, Suite 4550
Beverly, MA 01915
admin@scvs.org